Four different types of crystalline and fibrillar nanocellulosic materials with different functional groups (sulfate, carboxylate, amino-silane) are produced and used to disperse commercial multiwalled carbon nanotubes (MWCNT). Aqueous nanocellulose/MWCNT dispersions are drop-cast on tetrahedral amorphous carbon (ta-C) substrates to obtain highly stable composite electrodes. Their electrochemical properties are studied using cyclic voltammetry (CV) measurements with Ru(NH3)6 2+/3+, IrCl6 2–/3– redox probes, in electrolytes of different ionic strengths. All studied nanocellulose/MWCNT composites show excellent stability over a wide potential range (−0.6 to +1 V) in different electrolytes. Highly anionic and more porous fibrillar nanocellulosic composites indicate strong electrostatic and physical enrichment of cationic Ru(NH3)6 2+/3+ in lower-ionic-strength electrolytes, while lesser anionic and denser crystalline nanocellulosic composites show no such effects. This study provides essential insights into developing tailorable nanocellulose/carbon nanomaterial hybrid platforms for different electrochemical applications, by altering the constituent nanocellulosic material properties.
Vasuki Durairaj) 2 ABSTRACT: We introduce a composite membrane comprising of multi-walled carbon nanotubes (MWCNTs) dispersed in a matrix of sulfated nanofibrillar cellulose (SNFC) and Nafion. The high negative charge densities of the SNFC and Nafion ionomers enhance the cationic selectivity of the composite. The composite is characterized by scanning electron (SEM) and transmission electron (TEM) microscopies as well as Fourier transform infrared (FTIR) and Raman spectroscopies. Tetrahedral amorphous carbon (ta-C) electrodes modified with the composite are investigated as potential dopamine (DA) electrochemical sensors. The composite-modified electrodes show significant selectivity and sensitivity towards DA in the presence of ascorbic acid (AA) and uric acid (UA) in physiologically relevant concentrations. A linear dopamine detection range of 0.05 -100 µM with detection limits of 65 nM in PBS and 107 nM in interferent solution was determined using 100 mV/s cyclic voltammetry (CV) measurements. These results highlight the potential of the composite membrane for in vivo detection of neurotransmitters.
Nanocellulose has emerged as a promising green dispersant for carbon nanotubes (CNTs), and there is an increasing trend in developing nanocellulose/CNT hybrid materials for electrochemical detection of various small molecules. However, there have been very few comprehensive studies investigating the role of nanocellulosic material properties upon the electroanalytical performance of the resultant hybrid electrodes. In this work, we demonstrate the influence of both nanocellulose functionalization and geometry, utilizing sulfated cellulose nanocrystals, sulfated cellulose nanofibers, and TEMPO-oxidized cellulose nanofibers. Transmission electron microscopy tomography enables direct visualization of the effect of nanocellulosic materials on the hybrid architectures. High resolution X-ray absorption spectroscopy verifies that the chemical nature of CNTs in the different hybrids is unmodified. Electroanalytical performances of the different nanocellulose/CNT hybrid electrodes are critically evaluated using physiologically relevant biomolecules with different charge such as, dopamine (cationic), paracetamol (neutral), and uric acid (anionic). The hybrid electrode containing fibrillar nanocellulose geometry with a high degree of sulfate group functionalization provides the highest electroanalytical sensitivity and strongest enrichment towards all studied analytes. These results clearly demonstrate for the first time, the extent of tailorability upon the electroanalytical response of nanocellulose/CNT hybrid electrodes towards different biomolecules, offered simply by the choice of nanocellulosic materials.
We present a picosecond supercontinuum light source designed for stroboscopic white-light interferometry. This source offers a potential for high-resolution characterization of vibrational fields in electromechanical components with frequencies up to the GHz range. The light source concept combines a gain-switched laser diode, the output of which is amplified in a two-stage fiber amplifier, with supercontinuum generation in a microstructured optical fiber. Implemented in our white-light interferometer setup, optical pulses with optimized spectral properties and below 310 ps duration are used for stroboscopic illumination at freely adjustable repetition rates. The performance of the source is demonstrated by characterizing the surface vibration field of a square-plate silicon MEMS resonator at 3.37 MHz. A minimum detectable vibration amplitude of less than 100 pm is reached.
Protein fouling is a critical issue in the development of electrochemical sensors for medical applications, as it can significantly impact their sensitivity, stability, and reliability. Modifying planar electrodes with conductive nanomaterials that possess a high surface area, such as carbon nanotubes (CNTs), has been shown to significantly improve fouling resistance and sensitivity. However, the inherent hydrophobicity of CNTs and their poor dispersibility in solvents pose challenges in optimizing such electrode architectures for maximum sensitivity. Fortunately, nanocellulosic materials offer an efficient and sustainable approach to achieving effective functional and hybrid nanoscale architectures by enabling stable aqueous dispersions of carbon nanomaterials. Additionally, the inherent hygroscopicity and fouling-resistant nature of nanocellulosic materials can provide superior functionalities in such composites. In this study, we evaluate the fouling behavior of two nanocellulose (NC)/multiwalled carbon nanotube (MWCNT) composite electrode systems: one using sulfated cellulose nanofibers and another using sulfated cellulose nanocrystals. We compare these composites to commercial MWCNT electrodes without nanocellulose and analyze their behavior in physiologically relevant fouling environments of varying complexity using common outer-and inner-sphere redox probes. Additionally, we use quartz crystal microgravimetry with dissipation monitoring (QCM-D) to investigate the behavior of amorphous carbon surfaces and nanocellulosic materials in fouling environments. Our results demonstrate that the NC/MWCNT composite electrodes provide significant advantages for measurement reliability, sensitivity, and selectivity over only MWCNT-based electrodes, even in complex physiological monitoring environments such as human plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.