The Internet of Things (IoT) is transforming the agriculture industry and enables farmers to deal with the vast challenges in the industry. Internet of Farming (IoF) applications increases the quantity, quality, sustainability as well as cost effectiveness of agricultural production. Farmers leverage IoF to monitor remotely, sensors that can detect soil moisture, crop growth and livestock feed levels, manage and control remotely the smart connected harvesters and irrigation equipment, and utilize artificial intelligence based tools to analyze operational data combined with 3rd party information, such as weather services, to provide new insights and improve decision making. The Internet of Farming relies on data gathered from sensor of Wireless Sensor Network (WSN). The WSN requires a reliable connectivity to provide accurate prediction of the farming system. This chapter proposes a strategy that provides always best connectivity (ABC). The strategy considers a routing protocol to support Low-power and lossy networks (LLN), with a minimum energy usage. Two scenarios are presented.
In network selection problem (NSP), there are now two schools of thought. There are those who think using QoE (Quality of Experience) is the best yardstick to measure the suitability of a Candidate Network (CN) to handover to. On the other hand, Quality of Service (QoS) is also advocated as the solution for network selection problems. In this article, a comprehensive framework that supports effective and efficient network selection is presented. The framework  attempts to provide a holistic solution to network selection problem that is achieved by combining both of the QoS and QoE measures.  Using this hybrid solution the best qualities in both methods are combined to overcome issues of the network selection problem According to ITU-R (International Telecommunications Union – Radio Standardization Sector), a 4G network is defined as having peak data rates of 100Mb/s for mobile nodes with speed up to 250 km/hr and 1Gb/s for mobile nodes moving at pedestrian speed. Based on this definition, it is safe to say that mobile nodes that can go from pedestrian speed to speed of up to 250 km/hr will be the norm in future. This indicates that the MN’s mobility will be highly dynamic. In particular, this article addresses the issue of network selection for high speed Mobile Nodes (MN) in 4G networks. The framework presented in this article also discusses how the QoS value collected from CNs can be fine-tuned to better reflect an MN’s current mobility scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.