In this paper we are reporting the accelerated sonophotocatalytic degradation of Reactive Red (RR) 198 dye under visible light using dye sensitized TiO(2) activated by ultrasound. The effect of sonolysis, photocatalysis and sonophotocatalysis under visible light has been examined to study the influence on the degradation rates by varying the initial substrate concentration, pH and catalyst loading to ascertain the synergistic effect on the degradation techniques. Ultrasonic activation at 47kHz contributes through cavitation leading to the splitting of H(2)O(2) produced by both photocatalysis and sonolysis. This results in the formation of oxidative species, such as singlet oxygen ((1)O(2)) and superoxide (O2-*) radicals in the presence of oxygen. Sonication increases the amount of reactive radical species, inducing faster oxidation of the substrate and degradation of intermediates and also the deaggregation of the photocatalyst which are responsible for the observed synergy. Further, the photocatalytic activity of RR 198 dye sensitized TiO(2) is demonstrated by the degradation of phenol under visible light and ultrasound. A comparative study using TiO(2), Hombikat UV 100 and ZnO was also carried out.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.