This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Soda-lime glass (SLG) and other silica glasses exhibit the failure wave phenomenon under shock compression. The mechanism responsible for this peculiar behavior of glasses is still unresolved. In this study, a series of plate impact experiments was performed at three different impact stresses of 6.4, 8.3, and 10.8 GPa to better understand the mechanisms underlying the failure wave phenomenon. Specifically, spall experiments were conducted to probe the speed and existence of failure waves at different stresses in SLG. A layered glass target was used to probe the possibility of a “renucleation” of the wave at the SLG–SLG interface. When it existed, the failure wave was inferred to propagate at a speed of 1.3 km/s. However, it was observed that the failure wave phenomenon ceases to exist for impact stresses higher than 10 GPa. In experiments with a 6.4 GPa impact stress, the peak free surface velocity was significantly less than what is predicted by stress-Hugoniot calculations. This velocity deficit and other important features of the measured free surface velocity profiles were simulated using finite element analysis by incorporating an abrupt densification of SLG at a critical stress in the equation of state. This densification feature is similar to what would be expected of a phase transition. Although unable to unambiguously reveal the mechanism causing the failure wave phenomenon, the results of the present work clearly indicate that the failure wave causes a secondary compression and densification in SLG.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.