We show that the boundary behaviour of solutions to nonlocal fractional equations posed in bounded domains strongly differs from the one of solutions to elliptic problems modelled upon the Laplace-Poisson equation with zero boundary data. In this classical case it is known that, at least in a suitable weak sense, solutions of non-homogeneous Dirichlet problem are unique and tend to zero at the boundary. Limits of these solutions then produce solutions of some non-homogeneous Dirichlet problem as the interior data concentrate suitably to the boundary. Here, we show that such results are false for equations driven by a wide class of nonlocal fractional operators, extending previous findings for some models of the fractional Laplacian operator. Actually, different blow-up phenomena may occur at the boundary of the domain. We describe such explosive behaviours and obtain precise quantitative estimates depending on simple parameters of the nonlocal operators. Our unifying technique is based on a careful study of the inverse operator in terms of the corresponding Green function.
Contents
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.