The morphology of dry and hydrated perfluorosulfonic acid (PFSA) ionomers at cryo and room temperature is examined using TEM/STEM with EELS capability. Z-contrast imaging was utilized to identify the micro-phase separation of the hydrophilic side chains containing water and the hydrophobic polytetrafluoroethylene (PTFE) backbones. The results compare very favourably with hydrated morphologies obtained through mesoscale dissipative particle dynamics (DPD) simulations. The cryo-STEM images of plunge-frozen samples was also found to agree with morphologies based on SAXS experiments.
The processes by which single-wall carbon nanohorns are transformed by iron nanoparticles at high temperatures to form "nanooysters", hollow graphene capsules containing metal particles that resemble pearls in an oyster shell, are examined both experimentally and theoretically. Quantum chemical molecular dynamics (QM/MD) simulations based on the density-functional tight-binding (DFTB) method were performed to investigate their growth mechanism. The simulations suggest that the nanoparticles self-encapsulate to form single-wall nanooysters (SWNOs) by assisting the assembly of dangling carbon bonds, accompanied by migration of the metal particle inside the carbon structure. These calculations indicate that the structure of the oyster consists primarily of hexagons along with a few pentagons that are predominantly formed near the former nanohorn edges as a result of their fusion. Experimental observations of large diameter nanoparticles inside multiwall carbon shells indicate that migration and coalescence of many iron particles must occur, perhaps by the convergence of smaller SWNOs or carbon-coated Fe-nanoparticles, whereby the void space is generated by the corresponding increase in the carbon shell surface area to metal nanoparticle volume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.