Atherosclerosis is a leading cause of cardiovascular disease and mortality worldwide. Alterations in the gut microbiota composition, known as gut dysbiosis, have been shown to contribute to atherosclerotic cardiovascular disease (ACVD) development through several pathways. Disruptions in gut homeostasis are associated with activation of immune processes and systemic inflammation. The gut microbiota produces several metabolic products, such as trimethylamine (TMA), which is used to produce the proatherogenic metabolite trimethylamine-N-oxide (TMAO). Short-chain fatty acids (SCFAs), including acetate, butyrate, and propionate, and certain bile acids (BAs) produced by the gut microbiota lead to inflammation resolution and decrease atherogenesis. Chronic low-grade inflammation is associated with common risk factors for atherosclerosis, including metabolic syndrome, type 2 diabetes mellitus (T2DM), and obesity. Novel strategies for reducing ACVD include the use of nutraceuticals such as resveratrol, modification of glucagon-like peptide 1 (GLP-1) levels, supplementation with probiotics, and administration of prebiotic SCFAs and BAs. Investigation into the relationship between the gut microbiota, and its metabolites, and the host immune system could reveal promising insights into ACVD development, prognostic factors, and treatments.
Owing to their potential applications, as well as their structural diversity, the discovery of novel secondary metabolites from insect-associated fungi has been of interest to researchers in recent years. The aim of this study was therefore to estimate the diversity of fungi associated with fungus-growing termites and bioprospecting these for potential secondary metabolites. In total, 18 fungal species were isolated and described from the gut and comb of Macrotermes barneyi based on 18S ribosomal DNA gene sequence analysis. Antimicrobial activity assays were carried out on all the known fungi, and nine isolates were recorded as active against pathogenic fungi. Xylaria escharoidea, the best performing isolate, was grown at laboratory scale and 4,8-dihydroxy-3,4-dihydronaphthalen-1(2H) was isolated and characterized. The minimum inhibitory concentration of this isolated compound against tested pathogenic organisms was found to be 6.25 μg. In addition, molecular docking studies have revealed that 4,8-dihydroxy-3,4-dihydronaphthalen-1(2H) is a prominent antibacterial agent with a marked interaction with key residues on protein A (agrA C) that regulates the accessory gene. The findings of this study support the drug discovery of antimicrobial properties in insect-associated fungi, which may lead to novel secondary metabolites.
: SARS-CoV-2, a positive single-stranded RNA enveloped coronavirus, currently poses a global health threat. Drugs with quinoline scaffolds have long been studied to repurpose their useful broad-spectrum properties into treating various diseases, including viruses. Preliminary studies on the quinoline medications, Chloroquine and Hydroxy chloroquine, against SARS-CoV2, have shown to be a potential area of interest for drug development, due to their ability to prevent viral entry, act as anti-inflammatory modulators, and inhibit key enzymes allowing reduced viral infectivity. In addition to Chloroquine and Hydroxychloroquine, we discuss analogs of the drugs to understand the quinoline scaffold’s potential antiviral mechanisms. The heterocyclic scaffold of quinoline can be modified in many ways primarily through the modification of its substituents, we cover these different synthetic derivatives to understand properties that could enhance its antiviral specificity thoroughly. Chloroquine and its analogs can act on various stages of the viral life cycle pre and post entry. In this study, we review Chloroquine and its synthetic and natural analogs for their antiviral properties in a variety of different viruses. Furthermore, we review the compound’s potential abilities to attenuate symptoms associated with viral infections. Natural compounds that share scaffolding to Chloroquine can act as antivirals or attenuate symptoms through stimulate the host immune system or reducing oxidative stress. Furthermore, we discuss perspectives of the drug’s repurposing due to its ability to inhibit beta-hematin formation and to be a Zinc Ionophore.
Atherosclerosis is a leading cause of cardiovascular disease and mortality worldwide. Alterations in the gut microbiota composition, known as gut dysbiosis, have been shown to contribute to atherosclerotic cardiovascular disease (ACVD) development through several pathways. Disruptions in gut homeostasis are associated with activation of immune processes and systemic inflammation. The gut microbiota produces several metabolic products, namely trimethylamine (TMA), which is used to produce the proatherogenic metabolite trimethylamine-N-oxide (TMAO). Short chain fatty acids (SCFAs), including acetate, butyrate, and propionate, and certain bile acids (BAs) produced by the gut microbiota lead to inflammation resolution and decrease atherogenesis. Chronic low-grade inflammation is associated to common risk factors for atherosclerosis, including metabolic syndrome, type 2 diabetes mellitus (T2DM), and obesity. Novel strategies for reducing ACVD include the use of nutraceuticals such as resveratrol, modification of glucagon-like peptide 1 (GLP-1) levels, supplementation with probiotics, and administration of prebiotic SCFAs and BAs. Investigation into the relationship between the gut microbiota and its metabolites, and the host immune system could reveal promising insight into ACVD development, prognostic factors, and treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.