The development of reliable, eco-friendly protocol for the synthesis of nanomaterials is a challenging issue in the current nanotechnology. In the present study, we reported an environmentally benign and rapid method for biogenesis of silver nanoparticles using Gram-positive bacterium Lactobacillus acidophilus which acts both as reducing and capping agent. It was observed that the culture filtrate reduced silver ions into silver nanoparticles within 24 hrs of reaction time under room temperature. The UVÀVis spectrum shows the absorbance maximum at 434 nm, which is a characteristic of surface plasmon resonance of silver. X-ray diffraction analysis showed that the nanoparticles were of facecentred cubic crystalline structure. The presence of stable spherical-shaped silver nanoparticles in the size range of 4À50 nm was determined using the transmission electron microscopy analysis. Further, these nanoparticles showed effective antibacterial activity towards Klebsiella pneumoniae. The mechanism of the silver nanoparticle bactericidal activity is discussed in terms of its interaction with the cell membrane of bacteria by causing cytolysis and leakage of proteins and carbohydrates.
The advent of next-generation sequencing has facilitated large-scale discovery, validation and assessment of genetic markers for high density genotyping. The present study was undertaken to identify markers in genes supposedly related to wood property traits in three Eucalyptus species. Ninety four genes involved in xylogenesis were selected for hybridization probe based nuclear genomic DNA target enrichment and exome sequencing. Genomic DNA was isolated from the leaf tissues and used for on-array probe hybridization followed by Illumina sequencing. The raw sequence reads were trimmed and high-quality reads were mapped to the E. grandis reference sequence and the presence of single nucleotide variants (SNVs) and insertions/ deletions (InDels) were identified across the three species. The average read coverage was 216X and a total of 2294 SNVs and 479 InDels were discovered in E. camaldulensis, 2383 SNVs and 518 InDels in E. tereticornis, and 1228 SNVs and 409 InDels in E. grandis. Additionally, SNV calling and InDel detection were conducted in pair-wise comparisons of E. tereticornis vs. E. grandis, E. camaldulensis vs. E. tereticornis and E. camaldulensis vs. E. grandis. This study presents an efficient and high throughput method on development of genetic markers for family– based QTL and association analysis in Eucalyptus.
Natural genetic variation is randomly distributed and gene expression patterns vary widely in natural populations. These variations are an effect of multifactorial genetic perturbations resulting in different phenotypes. Genome-wide analysis can be used to comprehend the genetic basis governing this naturally occurring developmental variation. Secondary growth is a highly complex trait and systems genetics models are presently being applied to understand the molecular architecture of wood formation. In the present study, the natural variation in expression patterns of 18,987 transcripts expressed in the developing xylem tissues were documented across four phenotypes of Eucalyptus tereticornis with distinct holocellulose/klason lignin content. The differentially expressed genes across all the phenotypes were used to construct co-expression networks and sub-network 2 with 380 nodes and 17,711 edges was determined as the network of relevance, including 30 major cell wall biogenesis related transcripts with 2394 interactions and 10 families of transcription factors with 3360 interactions. EYE [EMBRYO YELLOW] was identified as major hub transcript with 173 degrees which interacted with known cell wall biogenesis genes. K-mean clustering was also performed for differentially expressed transcripts and two clusters discriminated the phenotypes based on their holocellulose/klason lignin content. The cluster based networks were enriched with GOs related to cell wall biogenesis and sugar metabolism. The networks developed in the present study enabled identification of critical regulators and novel transcripts whose expression variation could presumably govern the phenotypic variation in wood properties across E. tereticornis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.