The development of reliable, eco-friendly protocol for the synthesis of nanomaterials is a challenging issue in the current nanotechnology. In the present study, we reported an environmentally benign and rapid method for biogenesis of silver nanoparticles using Gram-positive bacterium Lactobacillus acidophilus which acts both as reducing and capping agent. It was observed that the culture filtrate reduced silver ions into silver nanoparticles within 24 hrs of reaction time under room temperature. The UVÀVis spectrum shows the absorbance maximum at 434 nm, which is a characteristic of surface plasmon resonance of silver. X-ray diffraction analysis showed that the nanoparticles were of facecentred cubic crystalline structure. The presence of stable spherical-shaped silver nanoparticles in the size range of 4À50 nm was determined using the transmission electron microscopy analysis. Further, these nanoparticles showed effective antibacterial activity towards Klebsiella pneumoniae. The mechanism of the silver nanoparticle bactericidal activity is discussed in terms of its interaction with the cell membrane of bacteria by causing cytolysis and leakage of proteins and carbohydrates.
An important aspect of phosphorene, the novel two-dimensional semiconductor, is whether holes and electrons can both be doped in this material. Some reports found that only electrons can be preferentially doped into phosphorene. There are some theoretical calculations showing charge-transfer interaction with both tetrathiafulvalene (TTF) and tetracyanoethylene (TCNE). We have carried out an investigation of chemical doping of phosphorene by a variety of electron donor and acceptor molecules, employing both experiment and theory, Raman scattering being a crucial aspect of the study. We find that both electron acceptors and donors interact with phosphorene by charge-transfer, with the acceptors having more marked effects. All the three Raman bands of phosphorene soften and exhibit band broadening on interaction with both donor and acceptor molecules. First-principles calculations establish the occurrence of charge-transfer between phosphorene with donors as well as acceptors. The absence of electron-hole asymmetry is noteworthy.
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop-damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm −1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm −1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy-dispersive X-ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml −1 against FOV and XAM, respectively. Results confirmed the anti-microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.