Visceral Leishmaniasis (VL) is a deadly parasitic infection which affects poorest to poor population living in the endemic countries. Increasing resistant to existing drugs, disease burden and a significant number of deaths, necessitates the need for an effective vaccine to prevent the VL infection. This study employed a combinatorial approach to develop a multi-epitope subunit vaccine by exploiting Leishmania donovani membrane proteins. Cytotoxic T- and helper T-lymphocyte binding epitopes along with suitable adjuvant and linkers were joined together in a sequential manner to design the subunit vaccine. The occurrence of B-cell and IFN-γ inducing epitopes approves the ability of subunit vaccine to develop humoral and cell-mediated immune response. Physiochemical parameters of vaccine protein were also assessed followed by homology modeling, model refinement and validation. Moreover, disulfide engineering was performed for the increasing stability of the designed vaccine and molecular dynamics simulation was performed for the comparative stability purposes. Further, molecular docking and molecular dynamics simulation study of a mutated and non-mutated subunit vaccine against TLR-4 immune receptor was performed and respective complex stability was determined. In silico cloning ensures the expression of designed vaccine in pET28a(+) expression vector. This study offers a cost-effective and time-saving way to design a novel immunogenic vaccine that could be used to prevent visceral leishmaniasis infection.
Infectious diseases are the major cause of high mortality among infants and geriatric patients. Vaccines are the only weapon in our arsenal to defend us ourselves against innumerable infectious diseases. Though myriad of vaccines are available, still countless people die due to microbial infections. Subunit vaccine is an effective strategy of vaccine development, combining a highly immunogenic carrier protein with highly antigenic but non–immunogenic antigen (haptens). In this study we have made an attempt to utilize the immunoinformatic tool for carrier protein development. Immunogenic mediators (T-cell, B-cell, IFN-γ epitopes) and physiochemical properties of hemolin protein of silkworm, Bombyx mori were studied. Hemolin was found to be non-allergic and highly antigenic in nature. The refined tertiary structure of modelled hemolin was docked against TLR3 and TLR4-MD2 complex. Molecular dynamics study emphasized the stable microscopic interaction between hemolin and TLRs. In-silico cloning and codon optimization was carried out for effective expression of hemolin in E. coli expression system. The overall presence of Cytotoxic T Lymphocytes (CTL), Humoral T Lymphocytes (HTL), and IFN-γ epitopes with high antigenicity depicts the potential of hemolin as a good candidate for carrier protein.
Protein-based drug delivery systems have an edge over conventional drug delivery systems due to their biodegradability, non-antigenicity, and excellent biocompatibility to improve the therapeutic properties of anticancer drugs. This study describes the increased anticancer efficacy of 5-fluorouracil (5-FU) conjugated with silkworm Bombyx mori pupal biowaste derived nanoparticles. Here, we have checked the toxicity of pupa-protein nanoparticles (PpNps) and their potential as a carrier for anticancer drugs. PpNps were prepared by a desolvation method which resulted in a uniform particle size of 162.7 ± 2.9 nm. The 5-FU loaded PpNps were formulated and characterized. The drug content of the developed 5-FU conjugated nanoparticles was evaluated by HPLC analysis. The entrapment efficiency and loading capacity of 5-FU were analyzed by HPLC and determined to be 93% and 88.6%, respectively. The release studies showed the biphasic release of 5-FU at pH 7.4 where rapid drug release was achieved for first 30 min, followed by a sustained release of 5-FU from the developed Nps achieved for the next 8 h. Mice with developed ascites tumors were intraperitoneally treated with 5-FU-PpNps and sacrificed. There was a significant increase in total red blood cells and hemoglobulin in 5-FU-PpNps treated mice, whereas a significant decrease in white blood cells which indicated the reduced inflammation of cancer. Subsequently, 5-FU-PpNps decreased the tumor volume and tumor cell viability, which proved its cytotoxic property to cancer cells. This study presents a novel approach to derive B. mori pupal protein nanoparticles, which can be safely used for cancer drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.