The basic problem in the operation of automotive brakes is the unpredictable nature of the tribological processes that occur at the contact of the friction pair. The stochastic nature of the tribological contact of the disc brake is affected differently by the complex interaction between the brake disc and the friction material under different conditions because of the influences of the applied pressure, the speed and the brake interface temperature. Owing to the highly dynamic non-linear change in the braking torque induced by the complex situation at the contact of the disc brake, the braking torque could not be modelled, predicted and controlled using classical mathematical methods. This is related, in particular, to the dynamic change in the braking torque in a braking cycle. Dynamic modelling and prediction of the braking torque is very important for further improvement in the performance of the brakes of motor vehicles through more precise control of their performance with respect to the driver demands and the change in the adhesion between the tyre and the road. Recurrent dynamic neural networks were employed in this paper for modelling, prediction and control of the dynamic change in the braking torque during a braking cycle. The dynamic functional relationship between the changes in the applied pressure, the sliding speed, the brake interface temperature and the braking torque of the disc brake was established. The dynamic model developed was used to predict and control the braking torque during a braking cycle under different disc brake operation conditions.
An intelligent optimization model aiming at off-line or pre-series optimization of the thermal curing cycle of polymer matrix composites is proposed and discussed. The computational procedure is based on the coupling of a finite element thermochemical process model, dynamic artificial neural networks and genetic algorithms. Objective of the optimization routine is the maximization of the composite degree of cure by the definition of the autoclave temperature. Obtained outcomes evidenced the capability of the method as well as its efficiency with respect to hard computing or experimental procedures
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.