Ensuring the motion stability and improving the mobility are crucial for wheeled ground vehicles (WGVs) to complete their missions, e.g., outdoor inspections and explorations. However, wheel slip may deteriorate the mobility performance and safety, particularly on unknown low-adhesive ground. In this research, a novel methodology to detect the adhesion stability using a force transmitting factor is proposed. The admissible maximum adhesion force (AMAF) and the optimal slip rate are determined via dynamically capturing the critical point from stable to unstable regions, based on which two controllers in prevention of wheel slip are proposed accordingly. In comparison to the existing methods, the novel detection only requires the measurements of wheel speed and wheel drive force. Additionally, it is adaptive to various uncertain wheel-ground conditions. Numerical simulation and experimental results indicate the effectiveness of the proposed methodology in adhesion stability detection, and maintaining the stability on uncertain slippery ground.