The operating speed is the average value of the speed of traffic flow under normal conditions, i.e., the conditions of mutual interference of traffic participants. The operating speed serves as a gauge for how well a given roadway is performing under the applicable traffic conditions. All key decisions in the management of the growth and utilization of a road network, including planning, designing, evaluating, and implementing road projects, depend on accurate measures of capacity and level of service. This paper aims to develop a recommended model for operating speed on two-lane roads under local conditions by analyzing the operating speeds of the traffic flow on representative sections of such roads. Through the modeling process, the values of the 85th percentile of the operating speed were determined, and compared with relevant studies. The results show that the authors have successfully modeled operating speeds as a function of longitudinal gradient in local conditions on two-lane roads.
This paper demonstrates and provides additional findings and instructions to produce new cold-recycled layers of pavement structures spatially and temporally sustainable. At the same time, recycled pavement structures have been enhanced with optimum amounts of new stone materials and binders made of cement and foamed bitumen. The subject of the research is based on the examination of recycled asphalt from surface and bituminous base courses of pavement structures for use on higher-type roads. The aim of the research is to model the process of producing recycled asphalt by cold recycling to optimize the process of influential parameters. In addition, one of the primary goals of the research is to demonstrate a sustainable way of producing new cold-recycled layers of pavement structures. The obtained results indicated the inevitability of the use of recycled material from pavement structures with the possibility of applying secondary and tertiary crushing of recycled mass, which depends on the type of layer for which the recycled material would be used. The research resulted in an optimum mixture variant of the stabilization layer of pavement structure that consists mainly of recycled material from a worn pavement structure improved with a relatively small amount of new aggregate with the addition of minimal stabilizers made of cement and foamed bitumen. The results showed that the optimum mixture variant of the stabilization layer is spatially and temporally stable. Additionally, the presented optimum variant of the stabilization layer enables sustainable development of road networks with minimum consumption of new natural resources.
Increasing mobility directly affects traffic frequency and thus increases the possible risk of traffic accident occurrences. Taking this into account, it is necessary to create models for determining risk and to act preventively based on these models; this is of great importance both to society and science. In this paper, six measuring sections of a road network are considered on the basis of eight geometric-exploitation road parameters, taking into account the data for light goods vehicles. An original methodology is proposed for identifying risk levels of road sections through their evaluation. For identifying risk levels, the Dombi Logarithmic Methodology of Additive Weights (D’LMAW) was used, which was combined with the Measurement Alternatives and Ranking according to the Compromise Solution (MARCOS) method. Statistical indicators were processed using a hybrid methodology based on the application of rough numbers and Dombi–Bonferroni functions. The performance of the presented methodology was verified on a real-world example, processing the statistical parameters of six two-lane road sections, with the sixth measuring section showing the best performance, since it had the minimum risk. Research has shown that measuring sections with increasing longitudinal gradients are safer. The analysis of measuring sections from fall to rise reduces the deviation of speeds from the speed limit on the roads. The effectiveness, rationality, and robustness of the solution of the proposed methodology was confirmed through a sensitivity analysis.
The estimation of the saturation flow rate is of utmost importance when defining the signal plan at intersections. Because of the numerous influential factors, the values of which are hard to be determined, the subject problem is to be regarded as an extremely complex one. This research deals with the estimation of a saturation flow rate of a shared lane with permitted left turns. The suggested algorithm is based on the application of the artificial neural networks where the data for training are received by simulation. The results obtained by the neural networks are compared with multiple linear regression and the known HCM 2010 approach for determining the saturated flow of a shared lane. The testing data have shown that the approach based on the artificial neural networks foresaw statistically significantly better values than the ones obtained by multiple linear regression, with an error of 27 veh/h against 49 veh/h. The HCM 2010 approach is significantly worse than the two others included in this research. The ways of the future development of the suggested method could include additional factors, such as the grade of the traffic lane, the proximity of the bus stops, and others.
Abstract:The main objec ve of the European policy of rail transport is the development of a single railway area. The opening of the railway sector to market compe on impose that railway undertakings behave like any other modern enterprises in other markets and in other industries. It means, they must constantly develop and maintain compe ve advantages, and be be er than others. In today's very intense compe on condi ons, this is the most diffi cult to achieve. The railway undertakings are challenged to fi nd op mal solu ons to operate effi ciently and eff ec vely, in order not only to survive on the transport market, but also to develop and maintain a compe ve advantage. The paper developed innova ve model for the evalua on of effi ciency of railway operators for passenger transport assessing the scope of work of railway undertakings that can greatly help to increase the compe ve ability of railway undertakings in the single railway market. The developed models allow the integra on of indicator groups (resources, opera onal, fi nancial, quality and safety indicators) into a single assessment of the scope of work of railway undertakings and also allow the provision of informa on about the correcve ac ons that can improve the scope of work of the railway undertaking. The proposed model has been tested on actual examples, e.g. railway undertaking Railways of Republic of Srpska. The analysis of the results shows excep onal suitability for use of developed approach for assessing the scope of work of railway undertakings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.