The black crystalline (aza)triangulene-based covalent organic framework TANG-COF was synthesized from its trinitro-TANG precursor via a one-pot, two-step reaction involving Pd-catalyzed hydrogenation and polycondensation with an aromatic dialdehyde. High crystallinity and permanent porosity of the layered two-dimensional (2D) structure were established. The rigid, electron-rich trioxaazatriangulene (TANG) building block enables strong π-electron interactions manifested in broad absorptions across the visible and NIR regions (E g ≈ 1.2 eV). The high HOMO energy of TANG-COF (−4.8 eV) enables facile p doping, resulting in electrical conductivity of up to 10–2 S/cm and room-temperature paramagnetic behavior with a spin concentration of ∼10%. DFT calculations reveal dispersion of the highest occupied band both within the 2D polymer layers (0.28 eV) and along their π-stacked direction (0.95 eV).
Boron-dipyrromethene dyes (BODIPYs) containing halogens at pyrrole carbons are very useful synthons for the synthesis of a variety of BOIDPYs for a wide range of applications. Among the functional groups, halogens are the functional groups which can be regiospecifically introduced at any desired pyrrole carbon of the BODIPY framework by adopting appropriate synthetic strategies. The halogenated BODIPYs can undergo facile nucleophilic substitution reactions to prepare several interesting BODIPY based compounds. This review describes the synthesis, properties and potential applications of halogenated BODIPYs containing one to six halogens at the pyrrole carbons of the BODIPY core as well as properties and applications of some of the substituted BODIPYs derived from halogenated BODIPYs.
A donor-acceptor dyad comprised of BF2-chelated dipyrromethene (BDP or BODIPY) and fullerene connected with a pyrrole ring spacer, 1 has been newly synthesized and characterized. Due to -carbon substitution and extended conjugation offered by the pyrrole ring, the optical absorbance and emission spectra of BDP macrocycle was found to be red-shifted significantly.Electrochemical studies provided information on the redox potentials while computational studies performed at the B3LYP/6-31G* level yielded an optimized geometry of the dyad that was close to that reported earlier for a BDP-C60 dyad covalently connected through the central boron atom, 2. The HOMO of the dyad was found to be on the BDP macrocycle, extended over the pyrrole bridging group, a property that is expected to facilitate electronic communication between the BDP and fullerene entities. The established energy level diagram using spectral, redox and optimized structural results predicted possibility of photoinduced electron transfer in both benzonitrile and toluene, representing polar and nonpolar solvents. However, such energy diagram suggested different routes for the charge recombination processes, that is, direct relaxation of the radical ion-pair in polar solvent while populating the triplet level of the sensitizer ( 3 BDP* or 3 C60*) in nonpolar solvent. Proof for charge separation and solvent dependent charge recombination processes were established from studies involving femto-and nanosecond pump-probe spectroscopy. The measured rate of charge separation, kCS for 1 was higher in both solvents compared to the earlier reported values for 2 due to electronically well-communicating pyrrole spacer. The charge recombination in toluene populated 3 BDP* as an intermediate step while in benzonitrile it yielded directly ground state of the dyad. The present findings reveal the significance of pyrrole spacer between the donor and acceptor to facilitate charge separation and solvent polarity dependent charge recombination processes.
meso-Anisyl boron dipyrrins (BODIPYs) 1-6 containing one to six bromines at the pyrrole carbons have been synthesized by treating meso-anisyl dipyrromethane with 'n' equivalents of N-bromosuccinimide in THF at room temperature followed by oxidation with DDQ, neutralization with triethylamine and further complexation with BF(3)·OEt(2). The brominated compounds were characterized by HR-MS mass, detailed (1)H, (19)F and (11)B NMR and X-ray diffraction studies. The crystal structures solved for compounds 2-6 indicate that the boron dipyrrinato framework comprised two pyrrole rings and one six membered boron containing ring in one plane like other reported BODIPYs. However, the dihedral angle between the BODIPY core and the meso-anisyl group varied from 48° to 88° and the meso-anisyl ring has an almost perpendicular orientation in penta 5 and hexabrominated 6 BODIPYs. The absorption and emission studies showed a bathochromic shift and reached a maximum for tetrabrominated derivative 4, after which there was no change in the peak maxima for penta 5 and hexabrominated 6 derivatives. However, the quantum yields were reduced with the increasing number of bromines. The electrochemical studies revealed that brominated BODIPY compounds 1-6 are easier to reduce compared to unsubstituted meso-anisyl BODIPY 8 and the reduction potential is linearly related to the number of Br groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.