Although the traits emerged in a mass gathering are often non-deliberative, the act of mass impulse may lead to irrevocable crowd disasters. The two-fold increase of carnage in crowd since the past two decades has spurred significant advances in the field of computer vision, towards effective and proactive crowd surveillance. Computer vision studies related to crowd are observed to resonate with the understanding of the emergent behavior in physics (complex systems) and biology (animal swarm). These studies, which are inspired by biology and physics, share surprisingly common insights, and interesting contradictions. However, this aspect of discussion has not been fully explored. Therefore, this survey provides the readers with a review of the state-of-the-art methods in crowd behavior analysis from the physics and biologically inspired perspectives. We provide insights and comprehensive discussions for a broader understanding of the underlying prospect of blending physics and biology studies in computer vision.
Crowd segmentation is important in serving as the basis for a wide range of crowd analysis tasks such as density estimation and behavior understanding. However, due to interocclusions, perspective distortion, clutter background, and random crowd distribution, localizing crowd segments is technically a very challenging task. This paper proposes a novel crowd segmentation framework-based on granular computing (GrCS) to enable the problem of crowd segmentation to be conceptualized at different levels of granularity, and to map problems into computationally tractable subproblems. It shows that by exploiting the correlation among pixel granules, we are able to aggregate structurally similar pixels into meaningful atomic structure granules. This is useful in outlining natural boundaries between crowd and background (i.e., noncrowd) regions. From the structure granules, we infer the crowd and background regions by granular information classification. GrCS is scene-independent and can be applied effectively to crowd scenes with a variety of physical layout and crowdedness. Extensive experiments have been conducted on hundreds of real and synthetic crowd scenes. The results demonstrate that by exploiting the correlation among granules, we can outline the natural boundaries of structurally similar crowd and background regions necessary for crowd segmentation.
It is common for CCTV operators to overlook interesting events taking place within the crowd due to large number of people in the crowded scene (i.e. marathon, rally). Thus, there is a dire need to automate the detection of salient crowd regions acquiring immediate attention for a more effective and proactive surveillance. This paper proposes a novel framework to identify and localize salient regions in a crowd scene, by transforming low-level features extracted from crowd motion field into a global similarity structure. The global similarity structure representation allows the discovery of the intrinsic manifold of the motion dynamics, which could not be captured by the low-level representation. Ranking is then performed on the global similarity structure to identify a set of extrema. The proposed approach is unsupervised so learning stage is eliminated. Experimental results on public datasets demonstrates the effectiveness of exploiting such extrema in identifying salient regions in various crowd scenarios that exhibit crowding, local irregular motion, and unique motion areas such as sources and sinks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.