Hemorrhagic fever with renal syndrome (HFRS) is endemic in Tatarstan, where thousands of cases are registered annually. Puumala orthohantavirus is commonly detected in human case samples as well as in captured bank voles, the rodent hosts. The pathogenesis of HFRS is still not well described, although the cytokine storm hypothesis is largely accepted. In this study, we present a comprehensive analysis of a fatal HFRS case compared with twenty four non-fatal cases where activation of the humoral and cellular immune responses, pro-inflammatory cytokines and disturbed blood coagulation were detected using immunological, histological, genetic and clinical approaches. Multiple organ failure combined with disseminated intravascular coagulation syndrome and acute renal failure was the cause of death. Decreased Interleukin (IL)-7 and increased IL-18, chemokine (C-C motif) ligand (CCL)-5, stem cell growth factor (SCGF)-b and tumor necrosis factor-beta (TNF-β) serum levels were found, supporting the cytokine storm hypothesis of hantavirus pathogenesis.
Kidney insufficiency is a hallmark of nephropathia epidemica (NE). Little is known about the mechanisms of the NE kidney pathology, with current knowledge mainly based on findings in postmortem tissue. We have analyzed kidney damage biomarkers in urine collected from early- and late-phase NE using Bio-Plex kidney toxicity panels 1 and 2. To determine the disease specificity, kidney damage biomarkers were also analyzed in urine samples from patients diagnosed with gout, type 2 diabetes, systemic lupus erythematosus, and chronic kidney insufficiency. Analysis of 12 biomarkers suggests damage to the kidney proximal tubule at the onset of NE. Also, upregulation of biomarkers of inflammation and leukocyte chemotaxis were detected in NE urine. Furthermore, increased clusterin levels were found in early- and late-phase NE urine. Comparative analysis revealed that clusterin is a biomarker, upregulated in NE urine.
Over 1,000 cases of hemorrhagic fever with renal syndrome (HFRS) were recorded in the Republic of Tatarstan (RT) in 2015. HFRS is a zoonotic disease caused by several different Old World hantaviruses. In RT, Puumala orthohantavirus (PUUV) is a prevalent etiological agent of HFRS. We looked for the genetic link between the PUUV strains isolated from the bank voles and from the infected humans. In addition, possible correlation between the genetic makeup of the PUUV strain involved and different clinical picture of HFRS was investigated. Partial PUUV small (S) genome segment sequences were retrieved from 37 small animals captured in the northwestern region of RT in 2015. Phylogenetic analysis revealed that 34 PUUV sequences clustered with strains of the previously identified “Russia” (RUS) genetic lineage, while 3 remaining PUUV sequences clustered with the known lineage from Finland (FIN). Sequence comparisons showed that the majority of the S-segment sequences isolated in the current study displayed 98.2–100.0% sequence identity when compared with the strains isolated earlier from the HFRS patients hospitalized in Kazan city. HFRS patients infected with PUUV strains of either RUS or FIN genetic lineages were observed to have consistent differences in clinical presentation of the disease and laboratory findings. These findings indicated a strong genetic link between the infected bank voles and human HFRS cases from the same localities. Thus, S-segment sequences of the PUUV strains isolated from HFRS patients could serve as a molecular marker for determining the likely geographic area where infection occurred.
Nephropathia Epidemica (NE), endemic to several Volga regions of Russia, including the Republic of Tatarstan (RT) and the Republic of Mordovia (RM), is a mild form of hemorrhagic fever with renal syndrome caused by infection with rodent-borne orthohantaviruses. Although NE cases have been reported for decades, little is known about the hantavirus strains associated with human infection in these regions. There is also limited understanding of the pathogenesis of NE in the RT and the RM. To address these knowledge gaps, we conducted comparative analyses of patients with NE in the RT and the RM. Clinical symptoms were more severe in patients with NE from the RM with longer observed duration of fever symptoms and hospitalization. Analysis of patient sera showed changes in the levels of numerous cytokines, chemokines, and matrix metalloproteases (MMPs) in patients with NE from both the RT and the RM, suggesting leukocyte activation, extracellular matrix degradation, and leukocyte chemotaxis. Interestingly, levels of several cytokines were distinctly different between patients NE from the RT when compared with those from the RM. These differences were not related to the genetic variation of orthohantaviruses circulating in those regions, as sequence analysis showed that Puumala virus (PUUV) was the causative agent of NE in these regions. Additionally, only the “Russia” (RUS) genetic lineage of PUUV was detected in the serum samples of patients with NE from both the RT and the RM. We therefore conclude that differences in serum cytokine, chemokine, and MMP levels between the RT and the RM are related to environmental factors and lifestyle differences that influence individual immune responses to orthohantavirus infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.