. On all three agars, colonies of C. albicans were not distinguished from colonies of C. dubliniensis. However, for the group containing C. albicans plus C. dubliniensis, both the sensitivity and the specificity of detection when CDA was used were 100%, compared with values of 97.6 and 100%, respectively, with CHROMagar Candida and 100 and 96.8%, respectively, with Candida ID agar. In addition, for the group containing C. tropicalis plus C. kefyr, the sensitivity and specificity of detection when CDA was used were also 100%, compared with 72.7 and 98.1%, respectively, with CHROMagar Candida. Candida ID agar did not differentiate C. tropicalis and C. kefyr strains but did differentiate members of a broader group (C. tropicalis, C. kefyr, Candida lusitaniae plus Candida guilliermondii); the sensitivity and specificity of detection for members of this group were 94.7 and 93.8%, respectively. In addition to the increased sensitivity and/or specificity of Candida detection when CDA was used, differentiation of colony types on CDA (red spotted, pink, or no color) was unambiguous and did not require precise assessment of colony color.
A novel agar medium, chromogenic Salmonella esterase (CSE) agar, for the differentiation of salmonellae is described. The agar contains peptones and nutrient extracts together with the following (grams per liter unless otherwise specified): 4-[2-(4-octanoyloxy-3,5-dimethoxyphenyl)-vinyl]-quinolinium-1-(propan-3-yl carboxylic acid) bromide (SLPA-octanoate; bromide form), 0.3223; lactose, 14.65; trisodium citrate dihydrate, 0.5; Tween 20, 3.0; ethyl 4-dimethylaminobenzoate, 0.035% (wt/vol), novobiocin, 70 mg liter−1. The key component of the medium is SLPA-octanoate, a newly synthesized ester formed from a C8fatty acid and a phenolic chromophore. In CSE agar, the ester is hydrolyzed by Salmonella spp. to yield a brightly colored phenol which remains tightly bound within colonies. After 24 h of incubation at 37 or 42°C, colonies of typical Salmonellaspp. were burgundy colored on a transparent yellow background, whereas non-Salmonella spp. were white, cream, yellow or transparent. CSE agar was evaluated by using a panel of strains including a high proportion of Salmonella and non-Salmonella strains giving atypical reactions on other differential agars. The sensitivity (93.1%) of CSE agar for non-typhi salmonellae compared favorably with those of Rambach (82.8%), xylose-lysine-deoxycholate (XLD; 91.4%), Hektoen-enteric (89.7%), and SM ID (91.4%) agars. The specificity (93.9%) was also comparable to those of other Salmonellamedia (SM ID agar, 95.9%; Rambach agar, 91.8%; XLD agar, 91.8%; Hektoen-enteric agar, 87.8%). Strains of Citrobacter freundii and Proteus spp. giving false-positive reactions with other media gave a negative color reaction on CSE agar. CSE agar enabled the detection of >30 Salmonellaserotypes, including agona, anatum,enteritidis, hadar, heidelberg,infantis, montevideo, thompson,typhimurium, and virchow, which accounted for 91.8% of the salmonella isolates recorded by the Public Health Laboratory Service (Colindale, London, England) for 1997.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.