Security vulnerabilities of the modern Internet of Things (IoT) systems are unique, mainly due to the complexity and heterogeneity of the technology and data. The risks born out of these IoT systems cannot easily fit into an existing risk framework. There are many cybersecurity risk assessment approaches and frameworks that are under deployment in many governmental and commercial organizations. Extending these existing frameworks to IoT systems alone will not address the new risks that have arisen in the IoT ecosystem. This study has included a review of existing popular cyber risk assessment methodologies and their suitability to IoT systems. National Institute of Standards and Technology, Operationally Critical Threat, Asset, and Vulnerability Evaluation, Threat Assessment & Remediation Analysis, and International Standards Organization are the four main frameworks critically analyzed in this research study. IoT risks are presented and reviewed in terms of the IoT risk category and impacted industries. IoT systems in financial technology and healthcare are dealt with in detail, given their high-risk exposure. Risk vectors for IoT and the Internet of Medical Things (IoMT) are discussed in this study. A unique risk ranking method to rank and quantify IoT risk is introduced in this study. This ranking method initiates a risk assessment approach exclusively for IoT systems by quantifying IoT risk vectors, leading to effective risk mitigation strategies and techniques. A unique computational approach to calculate the cyber risk for IoT systems with IoT-specific impact factors has been designed and explained in the context of IoMT systems.
We present a circuit architecture for compact analog VLSI implementation of the Izhikevich neuron model, which efficiently describes a wide variety of neuron spiking and bursting dynamics using two state variables and four adjustable parameters. Log-domain circuit design utilizing MOS transistors in subthreshold results in high energy efficiency, with less than 1pJ of energy consumed per spike. We also discuss the effects of parameter variations on the dynamics of the equations, and present simulation results that replicate several types of neural dynamics. The low power operation and compact analog VLSI realization make the architecture suitable for human-machine interface applications in neural prostheses and implantable bioelectronics, as well as large-scale neural emulation tools for computational neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.