Clustering methods become increasingly important in analyzing heterogeneity of treatment effects, especially in longitudinal behavioral intervention studies. Methods such as K-means and Fuzzy C-means (FCM) have been widely endorsed to identify distinct groups of different types of data. Build upon our MIFuzzy [1], our goal is to concurrently handle multiple methodological issues in studying high dimensional longitudinal intervention data with missing values. Particularly, this paper focuses on the initialization issue of FCM and proposes a new initialization method to overcome the local optimal problem and decrease the convergence time in handling high-dimensional data with missing values for overlapping clusters. Based on the idea of K-means++ [9], we proposed an enhanced Fuzzy C-means clustering (eFCM) and incorporated it into our MIFuzzy. This method was evaluated using real longitudinal intervention data, classic and generic datasets. Compared to conventional FCM, our findings indicate eFCM can improve computational efficiency and avoid the local optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.