Recent studies focusing on enhancing the thermoelectric performance of metal oxides were primarily motivated by their low cost, large availability of the component elements in the earth's crust, and their high stability. So far, these studies indicate that n-type materials, such as ZnO, have much lower thermoelectric performance than their p-type counterparts. Overcoming this limitation requires precisely tuning the thermal and electrical transport through n-type metal oxides. One way to accomplish this is through the use of optimally doped bulk assemblies of ZnO nanowires. In this study, the thermoelectric properties of n-type aluminum and gallium dually doped bulk assembles of ZnO nanowires were determined. The results indicated that a high zT of 0.6 at 1000 °C, the highest experimentally observed for any n-type oxide, is possible. The high performance is attributed to the tailoring of the ZnO phase composition, nanostructuring of the material, and Zn-III band hybridization-based resonant scattering.
The progress on sodium-ion battery technology faces many grand challenges, one of which is the considerably lower rate of sodium insertion/deinsertion in electrode materials due to the larger size of sodium (Na) ions and complicated redox reactions compared to the lithium-ion systems. Here, it is demonstrated that sodium ions can be reversibly stored in Zn-Sb intermetallic nanowires at speeds that can exceed 295 nm s −1 . Remarkably, these values are one to three orders of magnitude higher than the sodiation rate of other nanowires electrochemically tested with in situ transmission electron microscopy. It is found that the nanowires display about 161% volume expansion after the fi rst sodiation and then cycle with an 83% reversible volume expansion. Despite their massive expansion, the nanowires can be cycled without any cracking or facture during the ultrafast sodiation/desodiation process. In addition, most of the phases involved in the sodiation/desodiation process possess high electrical conductivity. More specifi cally, the NaZnSb exhibits a layered structure, which provides channels for fast Na + diffusion. This observation indicates that Zn-Sb intermetallic nanomaterials offer great promise as high rate and good cycling stability anodic materials for the next generation of sodium-ion batteries.
Abstract:Hydrogen is an efficient fuel which can be generated via water splitting, however hydrogen evolution occurs at high overpotential, and efficient hydrogen evolution catalysts are desired to replace state-of-the-art catalysts such as platinum. Here, we report an advanced electrocatalyst that has low overpotential, efficient charge transfers kinetics, low Tafel slope and durable. Carbon nanofibers (CNFs), obtained by carbonizing electrospun fibers, were decorated with MoS 2 using a facile hydrothermal method. The imaging of catalyst reveals a flower like morphology that allows for exposure of edge sulfur sites to maximize the HER process. HER activity of MoS 2 decorated over CNFs was compared with MoS 2 without CNFs and with commercial MoS 2 . MoS 2 grown over CNFs and MoS 2 -synthesized produced about 374 and 98 times higher current density at −0.30 V (vs. Reversible Hydrogen Electrode, RHE) compared with the MoS 2 -commercial sample, respectively. MoS 2 -commercial, MoS 2 -synthesized and MoS 2 grown over CNFs showed a Tafel slope of 165, 79 and 60 mV/decade, capacitance of 0.99, 5.87 and 15.66 mF/cm 2 , and turnover frequency of 0.013, 0.025 and 0.54 s −1 , respectively. The enhanced performance of MoS 2 -CNFs is due to large electroactive surface area, more exposure of edge sulfur to the electrolyte, and easy charge transfer from MoS 2 to the electrode through conducting CNFs.
We report a facile, room temperature synthesis of PbS, PbSe, PbS x Se1–x , and PbTe nanoparticles and their microscale assemblies by combining a chalcogen solution and a lead halide solution in select thiol–amine mixtures. Selection of an appropriate thiol–amine pair and/or the use of appropriate amine to thiol ratio has demonstrated a size control on nanoparticle self-assemblies ranging from nano- to microscale. Proper washing of these particles has yielded phase-pure and compositionally uniform material with minimal or no presence of any carbonaceous ligands on the particle surface, making it attractive for electronic device fabrication. The resulting PbS material exhibits bandgaps in the range 0.6 eV to as high as 1.2 eV for various assembly sizes. These optical bandgaps confirm the retention of quantum confinement of PbS material even in self-assembled nano/microstructures, which could be an interesting phenomenon for future photovoltaic development. Along with carbon-free, quantum-confined self-assemblies, this chemistry also provides a room temperature and instantaneous reaction route to synthesize individually dispersed PbS and PbSe particles with long chain ligand capping similar to traditional synthesis routes. The PbSe material synthesized from this route shows the ability to alloy with PbS at room temperature in the entire composition range and also demonstrates thermoelectric performance comparable to results in existing undoped PbSe literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.