On the basis of results of studies using high doses of estrogens, exposure to estrogen during fetal life is known to inhibit prostate development. However, it is recognized in endocrinology that low concentrations of a hormone can stimulate a tissue, while high concentrations can have the opposite effect. We report here that a 50% increase in freeserum estradiol in male mouse fetuses (released by a maternal Silastic estradiol implant) induced a 40% increase in the number of developing prostatic glands during fetal life; subsequently, in adulthood, the number of prostatic androgen receptors per cell was permanently increased by 2-fold, and the prostate was enlarged by 30% (due to hyperplasia) relative to untreated males. However, as the free serum estradiol concentration in male fetuses was increased from 2-to 8-fold, adult prostate weight decreased relative to males exposed to the 50% increase in estradiol. As a model for fetal exposure to man-made estrogens, pregnant mice were fed diethylstilbestrol (DES) from gestation days 11 to 17. Relative to controls, DES doses of 0.02, 0.2, and 2.0 ng per g of body weight per day increased adult prostate weight, whereas a 200-ng-per-g dose decreased adult prostate weight in male offspring. Our findings suggest that a small increase in estrogen may modulate the action of androgen in regulating prostate differentiation, resulting in a permanent increase in prostatic androgen receptors and prostate size. For both estradiol and DES, prostate weight first increased then decreased with dose, resulting in an inverted-U dose-response relationship.
Samples of connective tissue obtained from the hoof of six laminitic and eight non-laminitic adult horses were analysed zymographically to investigate whether connective tissue matrix metalloproteinases are activated or induced during laminitis. The activity or matrix metalloproteinases was substantially greater in the tissues from the laminitic horses than in the tissues from the non-laminitic horses. A comparison of the collagenolytic activity in the laminitic and control tissues showed that collagenolytic activities corresponding to the 92 kDa (P < 0.001), 72 kDa (P < 0.01) and 66 kDa (P < 0.01) bands were induced in the laminitic tissues.
Greater collagen synthesis in metacarpal than thoracic wounds was documented by increased concentrations of myofibroblasts, type-I collagen mRNA,TGF-beta1 mRNA, and decreased collagen degradation (ie, MMP-1). Imbalanced collagen synthesis and degradation likely correlate with development of exuberant granulation tissue, delaying healing in wounds of the distal portions of the limbs. Factors that inhibit collagen synthesis or stimulate collagenase may provide treatment options for horses with exuberant granulation tissue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.