In this work we demonstrate a practically complete temperature compensation of the second harmonic shear mode in a composite Al/AlN/Al/SiO2 thin film bulk acoustic resonator (FBAR) in the temperature range 25 °C–95 °C. The main advantages of this mode are its higher Q value in liquids as well as its higher frequency and hence higher resolution for sensor applications. For comparative reasons the non-compensated fundamental shear mode is also included in these studies. Both modes have been characterized when operated both in air and in pure water. Properties such as Q value, electromechanical coupling, dissipation and sensitivity are studied. An almost complete temperature compensation of the second harmonic shear mode was observed for an oxide thickness of 1.22 µm for an FBAR consisting of 2 µm thick AlN and 200 nm thick Al electrodes. Thus, the measured temperature coefficient of frequency (TCF) in air for the non-compensated fundamental shear mode (1.25 GHz) varied between −31 and −36 ppm °C−1 over the above temperature range while that of the compensated second harmonic shear mode (1.32 GHz) varied between +2 ppm °C−1 and −2 ppm °C−1 over the same temperature interval. When operated in pure water the former type shows a Q value and coupling coefficient, k2t, around 180 and 2%, respectively, whereas for the second harmonic these are 230 and 1.4%, respectively.
This work makes an overview of the progress made during the last decade with regard to a novel class of piezoelectric microwave devices employing acoustic Lamb waves in micromachined thin film membranes. This class of devices is referred to as either thin film Lamb wave resonators or piezoelectric contour-mode resonators both employing thin film aluminum nitride membranes. These devices are of interest for applications in both frequency control and sensing. High quality factor Lamb wave resonators exhibiting low noise, low loss and thermally stable performance are demonstrated and their application in high resolution gravimetric and pressure sensors further discussed. A specific emphasis is put on the ability of these devices to operate in contact with liquids. Future research directions are further outlined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.