Irritable bowel syndrome (IBS) is a functional gastroenterological disorder with complex pathogenesis and multifaceted therapy approaches, aimed at alleviating clinical symptoms and improving the life quality of patients. Its treatment includes dietary changes and drugs from various pharmacological groups such as antidiarrheals, anticholinergics, serotonin receptor antagonists, targeting chloride ion channels, etc. The present article is focused on the synthesis and biological evaluation of some mebeverine precursors as potential antispasmodics. Methods: In silico analysis aimed at predicting the pharmacodynamic profile of the compounds was performed. Based on these predictions, ex vivo bioelectrical activity (BEA) and immunohistochemical effects of the compounds were established. A thorough biological evaluation of the compounds was conducted assessing their in vitro antimicrobial and cytotoxic activity. Results: All the newly synthesized compounds exerted drug-like properties, whereby 3-methyl-1-phenylbutan-2-amine 3 showed a significant change in BEA due to Ca2+ channel regulation, Ca2+ influx modulation, and a subsequent change in smooth muscle cell response. The immunohistochemical studies showed a good correlation with the obtained data on the BEA, defining amine 3 as a leader structure. No cytotoxicity to human malignant leukemic cell lines (LAMA-84, K-562) was observed for all tested compounds. Conclusion: Based on the experimental results, we outlined 3-methyl-1-phenylbutan-2-amine 3 as a potential effective choice for orally active long-term therapy of IBS.
Introduction: Examination of the potential possibilities of 2-chloro-N-(1-(3,4-dimethoxyphenyl)propan-2-yl)-2-phenylacetamide (IQP) to affect bioelectrogenesis and the contractile activity of isolated smooth muscles (SM) from stomach. Aim: Having in mind the structural similarities between the molecules of papaverine and IQP, the aim of the present study was to examine such features of the newly synthesized molecule that may potentially affect the muscle tonus, spontaneous bioelectrical and contractile activities of smooth muscles isolated from the stomach, basing on specific mechanisms of papaverine. Materials and methods: The synthesis of IQP is based on the initially formed aziridine ring by principles of Gilbert’s reaction. Impact of IQP on the bioelectrogenesis and the contractile activity of isolated smooth muscles from male Wistar rats was measured by the single sucrose-gap method and isometrically recorded. Results: IQP (1×10-5 – 2.5×10-4 mol/l) causes muscle relaxation, producing changes in two processes that have influence on the mechanical activity of smooth muscles:1. Blocked Ca2+ influx through the potential-dependent membrane Ca2+ channels, followed in turn by lowering the Ca2+ intracellular levels. This effect is proved by the changes in the frequency and amplitude of spike-potentials in sucrose-bridge experiments when IQP is applied.2. Activation of a cAMP-dependent signal cascade. The relaxing effect of IQP was significantly reduced in the presence of KT5720(5×10-6 mol/l), an inhibitor of protein kinase A. Conclusion: We assume that there might be interconnections between these two IQP-dependent processes, because PKA-dependent phosphorylation of the L-type Ca2+ channels in smooth muscles provokes a reaction of inactivation.
This article concerns the synthesis and biological activities of some N-(1-(3,4-dimethoxyphenyl)propan-2-yl) amides as isoquinoline precursors and compounds with smooth muscle (SM) relaxant activity. Aim: find the biological activity of N-(1-(3,4-dimethoxyphenyl)propan-2-yl) amides and compare it with papaverine, an isoquinoline alkaloid that has been known as a brain and coronary vasodilator and SM relaxant. Materials and methods: In silico simulation with the PASS online program predicts SM relaxant activity for the compounds. The amides were tested on the isolated gastric SM preparations (SMPs) from rats to determine their effects on spontaneous contractile activity (CA) compared with papaverine. The in vivo effect on the learning and memory processes of rats was also assessed. Results: the data from the isometric measurements showed that one of the compounds caused ex vivo relaxation in circular SM tissues isolated from the stomach (corpus) of male Wistar rats. Conclusion: We found that the compound’s SM relaxation uses the papaverine pathway. It also has an improving effect on the cognitive functions of learning and memory processes in rats.
Higher basidiomycetes are recognized as functional foods due to their bioactive compound content, which exerts various beneficial effects on human health, and which have been used as sources for the development of natural medicines and nutraceuticals for centuries. The aim of this study was to evaluate and compare the biological potential of basidiocarp and mycelial biomass produced by submerged cultivation of a new regionally isolated oyster mushroom. The strain was identified with a high percentage of confidence (99.30%) as Pleurotus ostreatus and was deposited in the GenBank under accession number MW 996755. The β-glucan content in the basidiocarp and the obtained mycelial biomass was 31.66% and 12.04%, respectively. Three mycelial biomass and basidiocarp extracts were prepared, and the highest total polyphenol content (5.68 ± 0.15 mg GAE/g DW and 3.20 ± 0.04 mg GAE/g DW) was found in the water extract for both the fruiting body and the mycelium biomass. The in vitro antioxidant activity of the extracts was investigated, and it was determined that the water extracts exhibited the most potent radical scavenging activity. The potential ability of this new fungal isolate to affect the contractile activity (CA) of dissected smooth muscle preparations (SMP) was examined for the first time. It was found that oyster mushrooms likely exhibit indirect contractile effects on the gastric smooth muscle (SM) cells.
This article concerns the synthesis and in silico evaluation of 1-(2-chlorophenyl)-6-7-dimethoxy-3-methyl-3,4-dihydrogioquinoline (DIQ). A variety of in silico simulations were applied to assess the potential biological activity and toxicity of the compound. Based on these analyses, the target molecule DIQ was chosen for the synthesis. DIQ was synthesized from starting 2-chloro-N-(1-(3,4-dimethoxyphenyl)propan-2-yl)benzamide applied in the Bischler–Napieralski reaction. The newly obtained 3,4-dihydroisoquinoline derivative was fully analyzed and characterized. Based on the in silico calculations, the target molecule was synthesized with respect to its contractile activity, which is a permanent interest of our studies. Thus, further investigation into the possible medicinal applications of this compound is warranted in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.