Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs.
Thyroid adenomas are common benign human tumors with a high prevalence of about 5% of the adult population even in iodine sufficient areas. Rearrangements of chromosomal band 19q13.4 represent a frequent clonal cytogenetic deviation in these tumors making them the most frequent non-random chromosomal translocations in human epithelial tumors at all. Two microRNA (miRNA) gene clusters i.e. C19MC and miR-371-3 are located in close proximity to the breakpoint region of these chromosomal rearrangements and have been checked for a possible up-regulation due to the genomic alteration. In 4/5 cell lines established from thyroid adenomas with 19q13.4 rearrangements and 5/5 primary adenomas with that type of rearrangement both the C19MC and miR-371-3 cluster were found to be significantly overexpressed compared to controls lacking that particular chromosome abnormality. In the remaining cell line qRT-PCR revealed overexpression of members of the miR-371-3 cluster only which might be due to a deletion accompanying the chromosomal rearrangement in that case. In depth molecular characterization of the breakpoint in a cell line from one adenoma of this type reveals the existence of large Pol-II mRNA fragments as the most likely source of up-regulation of the C19MC cluster. The up-regulation of the clusters is likely to be causally associated with the pathogenesis of the corresponding tumors. Of note, the expression of miRNAs miR-520c and miR-373 is known to characterize stem cells and in terms of molecular oncology has been implicated in invasive growth of epithelial cells in vitro and in vivo thus allowing to delineate a distinct molecular subtype of thyroid adenomas. Besides thyroid adenomas rearrangements of 19q13.4 are frequently found in other human neoplasias as well, suggesting that activation of both clusters might be a more general phenomenon in human neoplasias.
(2010) ATROSAB, a humanized antagonistic anti-tumor necrosis factor receptor one-specific antibody, mAbs, 2:6, 639-647,
Background: Filaggrin (Flg) and hornerin (Hrnr) share similar structural and functional features. Both proteins have been implicated as essential proteins for skin barrier maintenance. Loss-of-function mutations of these genes constitute a risk factor for atopic dermatitis and eczema-related asthma. Furthermore, both FLG and HRNR protein levels are downregulated in patients with atopic dermatitis. Thus, mice deficient for Flg and Hrnr provide a novel model to study skin barrier impairment and the susceptibility for cutaneous inflammation.Methods: By using appropriate targeting vectors and breeding strategies, we established a homozygous FlgHrnr double-deficient (FlgHrnr −/− ) mouse model lacking both genes including the intergenomic sequence.Results: Neonates appeared normal, but developed a transient scaly phenotype with overall flaky appearance, but no overt skin phenotype in adulthood, thereby reflecting a subclinical barrier defect seen in humans. Structurally, FlgHrnr −/− mice displayed a markedly reduced granular layer and a condensed cornified layer. Functionally, FlgHrnr −/− mice showed permeability abnormalities and metabolic aberrations regarding the production of natural moisturizing factors (NMFs) in the stratum corneum.Surprisingly, although the immune system revealed no aberrations under steadystate conditions, FlgHrnr −/− mice are predisposed to mount an allergic contact dermatitis, especially at hapten threshold levels eliciting allergic reactions. Conclusions: Together, our FlgHrnr −/− mouse model nicely reflects the epicutaneous sensitization susceptibilities and inflammatory reactions to environmental insults in humans with impaired skin barrier functions. K E Y W O R D S allergic contact dermatitis, filaggrin, hornerin, skin barrier S U PP O RTI N G I N FO R M ATI O N Additional supporting information may be found online in the Supporting Information section at the end of the article. How to cite this article: Rahrig S, Dettmann JM, Brauns B, et al. Transient epidermal barrier deficiency and lowered allergic threshold in filaggrin-hornerin (FlgHrnr −/− ) double-deficient mice. Allergy.
The c-Rel protein, a member of the NF-κB transcription factor family, exerts unique and distinctive functions in various cell types. Although c-Rel is expressed in human epidermis, its functions in keratinocytes are poorly understood. Our small interfering RNA-based approach of c-Rel silencing in HaCaT keratinocytes induced altered cell morphology toward a spindle-shaped appearance. In addition, c-Rel downregulation resulted in increased apoptosis and significantly reduced proliferation towing to G2/M cell cycle delay, concomitant aberrant mitotic spindle formation, and induction of phospho-aurora A(Thr288). The relevance of c-Rel in epithelial carcinogenesis was further supported by detection of c-Rel expression in squamous cell carcinomas of the skin. Our studies indicate that c-Rel is a key regulator of cell fate decisions in keratinocytes such as cell growth and death and may have a role in epidermal carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.