The Langendorff-perfused heart technique has become the model of choice for multiparametric optical mapping of cardiac function and electrophysiology. However, photon scattering in tissues represents a significant drawback of the optical imaging approach, fundamentally limiting its mapping capacity to the heart surface. This work presents the first implementation of the optoacoustic approach for 4D imaging of the entire beating isolated mouse heart. The method combines optical excitation and acoustic detection to simultaneously render rich optical contrast and high spatio-temporal resolution at centimeter-scale depths. We demonstrate volumetric imaging of deeply located cardiac features, including the interventricular septum, chordae tendineae, and papillary muscles while further tracking the heart beat cycle and the motion of the pulmonary, mitral, and tricuspid valves in real time. The technique possesses a powerful combination between high imaging depth, fast volumetric imaging speed, functional and molecular imaging capacities not available with other imaging modalities currently used in cardiac research.
Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure.
Analyses of several mouse models imply that the phosphodiesterase 5 (PDE5) inhibitor sildenafil (SIL), via increasing cGMP, affords protection against angiotensin II (Ang II)-stimulated cardiac remodeling. However, it is unclear which cell types are involved in these beneficial effects, because Ang II may exert its adverse effects by modulating multiple renovascular and cardiac functions via Ang II type 1 receptors (AT 1 Rs). To test the hypothesis that SIL/cGMP inhibit cardiac stress provoked by amplified Ang II/AT 1 R directly in cardiomyocytes (CMs), we studied transgenic mice with CM-specific overexpression of the AT 1 R under the control of the a-myosin heavy chain promoter (aMHC-AT 1 R tg/1 ). The extent of cardiac growth was assessed in the absence or presence of SIL and defined by referring changes in heart weight to body weight or tibia length. Hypertrophic marker genes, extracellular matrix-regulating factors, and expression patterns of fibrosis markers were examined in aMHC-AT 1 R tg/1 ventricles (with or without SIL) and corroborated by investigating different components of the natriuretic peptide/PDE5/cGMP pathway as well as cardiac functions. cGMP levels in heart lysates and intact CMs were measured by competitive immunoassays and Förster resonance energy transfer. We found higher cardiac and CM cGMP levels and upregulation of the cGMP-dependent protein kinase type I with AT 1 R overexpression. However, even a prolonged SIL treatment regimen did not limit the progressive CM growth, fibrosis, or decline in cardiac functions in the aMHC-AT 1 R tg/1 model, suggesting that SIL does not interfere with the pathogenic actions of amplified AT 1 R signaling in CMs. Hence, the cardiac/ noncardiac cells involved in the cross-talk between SIL-sensitive PDE activity and Ang II/AT 1 R still need to be identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.