Alcohol dependence remains among the most common substance abuse problems worldwide, and compulsive alcohol consumption is a significant public health concern. Alcohol is an addictive drug that alters brain function through interactions with multiple neurotransmitter systems. These neurotransmitter systems mediate the reinforcing effects of alcohol. Specifically, the serotonergic system is important in mediating alcohol reward, preference, dependence, and craving. In this review chapter, we first discuss the serotonin system as it relates to alcoholism, and then outline interactions between this system and other neurotransmitter systems. We emphasize the serotonin transporter and its possible role in alcoholism, then present several serotonergic receptors and discuss their contribution to alcoholism, and finally assess the serotonin system as a target for pharmacotherapy, with an emphasis on current and potential treatments.
Summary
Accessory proteins in Frizzled (FZD) receptor complexes are thought to determine ligand selectivity and signaling amplitude. Genetic evidence indicates that specific combinations of accessory proteins and ligands mediate vascular beta-catenin signaling in different CNS structures. In the retina, the tetraspanin TSPAN12 and the ligand norrin (NDP) mediate angiogenesis and both genes are linked to familial exudative vitreoretinopathy (FEVR). Yet, the molecular function of TSPAN12 remains poorly understood. Here, we report that TSPAN12 is an essential component of the NDP-receptor complex and interacts with FZD4 and NDP via its extracellular loops, consistent with an action as co-receptor that enhances FZD4 ligand selectivity for NDP. FEVR-linked mutations in TSPAN12 prevent the incorporation of TSPAN12 into the NDP-receptor complex. In vitro and in Xenopus embryos, TSPAN12 alleviates defects of FZD4 M105V, a mutation that destabilizes the NDP/FZD4 interaction. This study sheds light on the poorly understood function of accessory proteins in FZD signaling.
Seven hundred and thirty-four unique genes were recovered from a cDNA library enriched for genes up-regulated during the process of lens regeneration in the frog Xenopus laevis. The sequences represent transcription factors, proteins involved in RNA synthesis/processing, components of prominent cell signaling pathways, genes involved in protein processing, transport, and degradation (e.g., the ubiquitin/proteasome pathway), matrix metalloproteases (MMPs), as well as many other proteins. The findings implicate specific signal transduction pathways in the process of lens regeneration, including the FGF, TGF-beta, MAPK, Retinoic acid, Wnt, and hedgehog signaling pathways, which are known to play important roles in eye/lens development and regeneration in various systems. In situ hybridization revealed that the majority of genes recovered are expressed during embryogenesis, including in eye tissues. Several novel genes specifically expressed in lenses were identified. The suite of genes was compared to those up-regulated in other regenerating tissues/organisms, and a small degree of overlap was detected.
Proper connectivity of the nervous system requires temporal and spatial control of axon guidance signaling. As commissural axons navigate across the CNS midline, ROBO-mediated repulsion has traditionally been thought to be repressed before crossing, and then to become upregulated after crossing. The regulation of the ROBO receptors involves multiple mechanisms that control protein expression, trafficking, and activity. Here, we report that mammalian ROBO1 and ROBO2 are not uniformly inhibited precrossing and are instead subject to additional temporal control via alternative splicing at a conserved microexon. The NOVA splicing factors regulate the developmental expression of ROBO1 and ROBO2 variants with small sequence differences and distinct guidance activities. As a result, ROBO-mediated axonal repulsion is activated early in development to prevent premature crossing and becomes inhibited later to allow crossing. Postcrossing, the ROBO1 and ROBO2 isoforms are disinhibited to prevent midline reentry and to guide postcrossing commissural axons to distinct mediolateral positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.