The construction and purification of recombinant baculovirus vectors for the expression of foreign genes in insect cells by standard transfection and plaque assay methods can take as long as 4 to 6 weeks. This period can be reduced to several days by using a novel baculovirus shuttle vector (bacmid) that can replicate in Escherichia coli as a plasmid and can infect susceptible lepidopteran insect cells. The bacmid is a recombinant virus that contains a mini-F replicon, a kanamycin resistance marker, and attTn7, the target site for the bacterial transposon Tn7. Expression cassettes comprising a baculovirus promoter driving expression of a foreign gene that is flanked by the left and right ends of Tn7 can transpose to the target bacmid in E. coli when Tn7 transposition functions are provided in trans by a helper plasmid. The foreign gene is expressed when the resulting composite bacmid is introduced into insect cells.
The genome of the geminivirus tomato golden mosaic virus (TGMV) consists of two circular DNA molecules designated as components A and B. The A component encodes the only viral protein, AL1, that is required for viral replication. We showed that AL1 interacts specifically with TGMV A and B DNA by using an immunoprecipitation assay for AL1:DNA complex formation. In this assay, a monoclonal antibody against AL1 precipitated AL1:TGMV DNA complexes, whereas an unrelated antibody failed to precipitate the complexes. Competition assays with homologous and heterologous DNAs established the specificity of AL1:DNA binding. AL1 produced by transgenic tobacco plants and by baculovirus-infected insect cells exhibited similar DNA binding activity. The AL1 binding site maps to 52 bp on the left side of the common region, a 235-bp region that is highly conserved between the two TGMV genome components. The AL1:DNA binding site does not include the putative hairpin structure that is conserved in the common regions or the equivalent 5' intergenic regions of all geminiviruses. These studies demonstrate that a geminivirus replication protein is a sequence-specific DNA binding protein, and the studies have important implications for the role of this protein in virus replication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.