Feeding ecology and geographic location are 2 major factors influencing animal stable isotope signatures, but their relative contributions are poorly understood, which limits the usefulness of stable isotope analysis in the study of animal ecology. To improve our knowledge of the main sources of isotopic variability at sea, we determined δ 15 N and δ 13 C signatures in the first primary feather of adult birds from 11 Procellariiform species (n = 609) across 16 northeast Atlantic localities, from Cape Verde (20°N) to Iceland (60°N). Post-breeding areas (where the studied feather is thought to be grown) were determined using light-level geolocation for 6 of the 11 species. Isotopic variability was geographically unstructured within the mid-northeast Atlantic (Macaronesian archipelagos), but trophically structured according to species and regardless of the breeding location, presumably as a result of trophic segregation among species. Indeed, the interspecific isotopic overlap resulting from combining δ 15 N and δ 13 C signatures of seabirds was low, which suggests that most species exploited exclusive trophic resources consistently across their geographic range. Species breeding in north temperate regions (Iceland, Scotland and Northern Ireland) showed enriched δ 15 N compared to the same or similar species breeding in tropical and subtropical regions, suggesting some differences in baseline levels between these regions. The present study illustrates a noticeable trophic segregation of northeast Atlantic Procellariiformes. Our results show that the isotopic approach has limited applicability for the study of animal movements in the northeast Atlantic at a regional scale, but is potentially useful for the study of long-distance migrations between large marine systems. OPEN PEN ACCESS CCESSStable isotope analysis combined with movement tracking reveals the effect of baseline geographic variability on the isotopic signatures of marine animals and improves our understanding of their spatial and feeding ecology
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Trophic ecology and movements are critical issues for understanding the role of marine predators in food webs and for facing the challenges of their conservation. Seabird foraging ecology has been increasingly studied, but small elusive species, such as those forming the 'little shearwater' complex, remain poorly known. We present the first study on the movements and feeding ecology of the Barolo shearwater Puffinus baroli baroli in a colony from the Azores archipelago (NE Atlantic), combining global location-sensing units, stable isotope analyses of feathers (δ 13 C and δ 15 N), stomach flushings and data from maximum depth gauges. During the chick-rearing period, parents visited their nests most nights, foraged mainly south of the colony and fed at lower trophic levels than during the non-breeding period. Squid was the most diverse prey (6 families and at least 10 different taxa), but species composition varied considerably between years. Two squid families, Onychoteuthidae and Argonautidae, and the fish family Phycidae accounted for 82.3% of ingested prey by number. On average, maximum dive depths per foraging trip reached 14.8 m (range: 7.9 to 23.1 m). After the breeding period, birds dispersed offshore in all directions and up to 2500 km from the breeding colony, and fed at higher trophic levels. Overall, our results indicate that the Barolo shearwater is a non-migratory shearwater feeding at the lowest trophic level among Macaronesian seabirds, showing both diurnal and nocturnal activity and feeding deeper in the water column, principally on small schooling squid and fish. These traits contrast with those of 3 other Azorean Procellariiformes (Cory's shearwater Calonectris diomedea, the Madeiran storm-petrel Oceanodroma castro and Monteiro's storm-petrel O. monteiroi), indicating ecological segregation within the Azorean seabird community.
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. a b s t r a c tThe first mid-Atlantic diet of Mesoplodon beaked whales is presented, from ten Sowerby's Mesoplodon bidens stranded in the Azores region between 2002 and 2009. This doubles the worldwide number of stomachs sampled, and reveals new feeding habits for this species. The mean number of prey items per stomach was 857 89 (range: 12-238), with fish accounting for 99.3% and cephalopods contributing less than 1% of total prey. Fish otoliths from 15 families and cephalopod lower mandibles from three families were identified, representing 22 taxa. The diet consisted mainly of small mid-water fish, the most numerous being Diaphus sp., Lampanyctus sp. and Melamphaidae species. Myctophids were present in all stranded individuals, followed by Diretmidae, Melamphaidae and Opisthoproctus soleatus, while the remaining fish species were scarce or single occurrences. Consistency of diet in four different years reveals a divergence from all previous records in continental areas, where mainly neritic and shelf-break benthopelagic fish species have been reported. Mid-Atlantic Sowerby's beaked whales' showed dietary plasticity, feeding on the most abundant mid-water groups occurring between 0 and750 m. Trophic level from prey numerical frequency was estimated at 4.4 70.46.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.