A novel synthetic strategy to obtain acylhydrazone-oxazole hybrids in three-step reactions in moderate to good yields is reported. The key step reaction consists in a Van Leusen reaction using a bifunctional component of both an aldehyde and a functional group. The target molecules were evaluated via in-silico by molecular docking with the main protease enzyme of SARS-Cov-2, where two acyl hydralazine-oxazoles yielded good predicted free energy values in comparison to the cocrystalized ligand.
Six 1,3-oxazoles were synthetized in moderate to good yields by Van Leusen reaction in a pressure reactor. The methodology allowed to decrease the reaction times reported in the literature from hours to 20 min. In addition, preliminary qualitative recognition of cations with some synthetized oxazoles such as Hg2+, Ni2+, Zn2+, Ag+, Cu2+, Pb2+ was done and a “turn off” effect was observed with Ni2+. Finally, the 1,3-oxazoles could be of biological relevance because they are considered privileged nucleus in medicinal chemistry and therefore will be useful to obtain pharmacophoric hybrid molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.