The extraction of meaningful features from the monitoring of laser processes is the foundation of new non-destructive quality inspection methods for the manufactured pieces, which has been and remains a growing interest in industry. We present ConvLBM, a novel approach to monitor Laser Based Manufacturing processes in real-time. ConvLBM uses a Convolutional Neural Network model to extract features and quality indicators from raw Medium Wavelength Infrared coaxial images. We demonstrate the ability of ConvLBM to represent process dynamics, and predict quality indicators in two scenarios: dilution estimation in Laser Metal Deposition, and location of defects in laser welding processes. Obtained results represent a breakthrough in the 3D printing of large metal parts, and in the quality control of welding processes. We are also releasing the first large dataset of annotated images of laser manufacturing.
In this paper, we report on the higher performance of uncooled MWIR PbSe imagers compared to visible CMOS technology, in both closed-loop control of laser cladding and real-time monitoring of laser welding
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.