BackgroundInfluenza is a segmented negative strand RNA virus. Each RNA segment is encapsulated by influenza nucleoprotein and bound by the viral RNA dependent RNA polymerase (RdRP) to form viral ribonucleoproteins responsible for RNA synthesis in the nucleus of the host cell. Influenza transcription results in spliced mRNAs (M2 and NS2), intron-containing mRNAs (M1 and NS1), and intron-less mRNAs (HA, NA, NP, PB1, PB2, and PA), all of which undergo nuclear export into the cytoplasm for translation. Most cellular mRNA nuclear export is Nxf1-mediated, while select mRNAs utilize Crm1.MethodsHere we inhibited Nxf1 and Crm1 nuclear export prior to infection with influenza A/Udorn/307/1972(H3N2) virus and analyzed influenza intron-less mRNAs using cellular fractionation and reverse transcription - quantitative polymerase chain reaction (RT-qPCR). We examined direct interaction between Nxf1 and influenza intron-less mRNAs using immuno purification of Nxf1 and RT-PCR of associated RNA.ResultsInhibition of Nxf1 resulted in less influenza intron-less mRNA export into the cytoplasm for HA and NA influenza mRNAs in both human embryonic kidney cell line (293 T) and human lung adenocarcinoma epithelial cell line (A549). However, in 293 T cells no change was observed for mRNAs encoding the components of the viral ribonucleoproteins; NP, PA, PB1, and PB2, while in A549 cells, only PA, PB1, and PB2 mRNAs, encoding the RdRP, remained unaffected; NP mRNA was reduced in the cytoplasm. In A549 cells NP, NA, HA, mRNAs were found associated with Nxf1 but PA, PB1, and PB2 mRNAs were not. Crm1 inhibition also resulted in no significant difference in PA, PB1, and PB2 mRNA nuclear export.ConclusionsThese results further confirm Nxf1-mediated nuclear export is functional during the influenza life cycle and hijacked for select influenza mRNA nuclear export. We reveal a cell type difference for Nxf1-mediated nuclear export of influenza NP mRNA, a reminder that cell type can influence molecular mechanisms. Importantly, we conclude that in both A549 and 293 T cells, PA, PB1, and PB2 mRNA nuclear export is Nxf1 and Crm1 independent. Our data support the hypothesis that PA, PB1, and PB2 mRNAs, encoding the influenza RdRP, utilize atypical mRNA nuclear export.
During the last decade, S -genotyping has been extensively investigated in fruit tree crops such as those belonging to the Prunus genus, including plums. In plums, S -allele typing has been largely studied in diploid species but works are scarcer in polyploid species due to the complexity of the polyploid genome. This study was conducted in order to analyze the S -genotypes of 30 diploid P. salicina , 17 of them reported here for the first time, and 29 hexaploid plums (24 of P. domestica and 5 of P. insititia ). PCR analysis allowed identifying nine S -alleles in the P. salicina samples allocating the 30 accessions in 16 incompatibility groups, two of them identified here for the first time. In addition, pollen tube growth was studied in self-pollinated flowers of 17 Tunisian P. salicina under the microscope. In 16 samples, including one carrying the Se allele, which has been correlated with self-compatibility, the pollen tubes were arrested in the style. Only in one cultivar (“Bedri”), the pollen tubes reached the base of the style. Twelve S -alleles were identified in the 24 P. domestica and 5 P. insititia accessions, assigning accessions in 16 S -genotypes. S -genotyping results were combined with nine SSR loci to analyze genetic diversity. Results showed a close genetic relationship between P. domestica and P. salicina and between P. domestica and P. insititia corroborating that S -locus genotyping is suitable for molecular fingerprinting in diploid and polyploid Prunus species.
Peach (Prunus persica) is an economically important temperate fruit crop due to its edible fruits. Due to the need to develop new varieties better adapted to climate change, it is of great interest to find germplasm adapted to warmer conditions, such as those found in the Canary Islands. Peach was an important crop during the last century in one of those islands (La Palma), but its cultivation has been abandoned in recent years. Currently, commercial production is relict and isolated trees are relegated to family orchards with little management. With the objective to characterize and prevent the loss of local varieties of this crop, peach trees were sampled along La Palma. A total of 89 local peach accessions were prospected and analyzed with 10 single-sequence repeat (SSR) loci, which permitted 28 different genotype profiles to be detected. These genotypes were compared to 95 Spanish peach landraces conserved in an ex situ collection, and 26 additional samples from eight different countries. Results showed that the peach genetic diversity found in La Palma was low. In addition, a relation between La Palma samples and other Spanish peaches was observed, which could indicate the arrival of genetic material from the Iberian Peninsula and subsequent intercrossing and local selection of the genotypes more adapted to the subtropical climate of the island. The population structure reflects a grouping of the samples based on fruit type and geographic origin.
Mango (Mangifera indica L.) is a tropical fruit tree originated from Southeastern Asia, which is cultivated worldwide in regions with tropical and subtropical climates. Mango cultivation area has significantly extended in the last decades often to regions where environmental conditions are not the most favourable for optimal mango flower development and fruit set and, consequently, several reproductive problems had been described in this species. Some of them could be related to self-incompatibility, but so far information is not clear on the possible self-incompatibility system operating in this crop. In this work we study pollen tube growth, following self and cross pollination, in three mango cultivars ('Osteen', 'Kent' and 'Kensington'). Paternity was also determined in the offspring of two of these cultivars-'Osteen' and 'Kent'-and in a solid block of an additional cultivar, 'Keitt'. Sequential examination of pollen tube
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.