High spatial resolution maps of land surface energy, water and CO2 fluxes, e.g. evapotranspiration (ET) and gross primary productivity (GPP), are important for agricultural monitoring, ecosystem and water resources management. However, it is not clear which is the optimal (e.g. coarsest possible) spatial resolution to capture those fluxes accurately. Unmanned Aerial Systems (UAS) can address this by collecting very high spatial resolution (<1 m, VHR) imagery. The objective of this study is to model ET and GPP dynamics using VHR optical and thermal imagery and quantify the influence of the spatial heterogeneity in the flux simulations and validations. The study was conducted at a deciduous willow bioenergy eddy covariance (EC) flux site in Denmark. Flight campaigns were conducted during the growing seasons of 2016 and 2017 with a hexacopter equipped with RGB, multispectral and thermal infrared cameras. A 'top-down' modeling approach consisting of the Priestley-Taylor Jet Propulsion Laboratory model and a light use efficiency model sharing the same canopy biophysical constraints was used to estimate ET and GPP. Model outputs were benchmarked by EC flux observations with the source weighted footprint. Our results indicate that our model can well estimate the instantaneous net radiation, ET, GPP, evaporative fraction, light use efficiency and water use efficiency with root-mean-square deviations (RMSD) of 31.6 W•m −2 , 41.2 W•m −2 , 3.12 μmol•C•m −2 •s −1 , 0.08, 0.16 g•C•MJ −1 and 0.35 g•C•kg −1 , respectively. Further, it is found that using a footprint model to sample different areas of VHR imagery can be a tool to provide better diurnal estimates to benchmark with EC data. Moreover, these VHR maps (0.3 m) allowed us to quantify metrics of spatial heterogeneity by using semivariogram analysis and by aggregating model inputs into different spatial resolutions. For instance, we find that in this site, the aggregation of simulated GPP using the source weighted mean of the EC footprint was about 30% lower in RMSD than using the arithmetic mean of the footprint. This demonstrates the accuracy of the modeled VHR spatial patterns.Nevertheless, we also find that imagery resolution consistent with the canopy size (around 1.5 m in our study) is sufficient to capture the spatial heterogeneity of the fluxes as transpiration and canopy assimilation of CO2 are processes regulated at the tree crown level. Our results highlight the importance of considering the land surface 3 heterogeneity for flux modeling and the source contribution within the EC footprint for model benchmarking at appropriate spatial resolutions.
During water stress, crops undertake adjustments in functional, structural, and biochemical traits. Hyperspectral data and machine learning techniques (PLS-R) can be used to assess water stress responses in plant physiology. In this study, we investigated the potential of hyperspectral optical (VNIR) measurements supplemented with thermal remote sensing and canopy height (hc) to detect changes in leaf physiology of soybean (C3) and maize (C4) plants under three levels of soil moisture in controlled environmental conditions. We measured canopy evapotranspiration (ET), leaf transpiration (Tr), leaf stomatal conductance (gs), leaf photosynthesis (A), leaf chlorophyll content and morphological properties (hc and LAI), as well as vegetation cover reflectance and radiometric temperature (TL,Rad). Our results showed that water stress caused significant ET decreases in both crops. This reduction was linked to tighter stomatal control for soybean plants, whereas LAI changes were the primary control on maize ET. Spectral vegetation indices (VIs) and TL,Rad were able to track these different responses to drought, but only after controlling for confounding changes in phenology. PLS-R modeling of gs, Tr, and A using hyperspectral data was more accurate when pooling data from both crops together rather than individually. Nonetheless, separated PLS-R crop models are useful to identify the most relevant variables in each crop such as TL,Rad for soybean and hc for maize under our experimental conditions. Interestingly, the most important spectral bands sensitive to drought, derived from PLS-R analysis, were not exactly centered at the same wavelengths of the studied VIs sensitive to drought, highlighting the benefit of having contiguous narrow spectral bands to predict leaf physiology and suggesting different wavelength combinations based on crop type. Our results are only a first but a promising step towards larger scale remote sensing applications (e.g., airborne and satellite). PLS-R estimates of leaf physiology could help to parameterize canopy level GPP or ET models and to identify different photosynthetic paths or the degree of stomatal closure in response to drought.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.