Low back pain (LBP) is one of the most frequent symptoms associated with intervertebral disc degeneration (IDD) and affects more than 80% of the population, with strong psychosocial and economic impacts. The main cause of IDD is a reduction in the proteoglycan content within the nucleus pulposus (NP), eventually leading to the loss of disc hydration, microarchitecture, biochemical and mechanical properties. The use of mesenchymal stem cells (MSCs) has recently arisen as a promising therapy for IDD. According to numerous reports, MSCs mediate their regenerative and immunomodulatory effects mainly through paracrine mechanisms. Recent studies have suggested that extracellular vesicles (EVs) extracted from MSCs may be a promising alternative to cell therapy in regenerative medicine. EVs, including exosomes and microvesicles, are secreted by almost all cell types and have a fundamental role in intercellular communication. Early results have demonstrated the therapeutic potential of MSCs-derived EVs for the treatment of IDD through the promotion of tissue regeneration, cell proliferation, reduction in apoptosis and modulation of the inflammatory response. The aim of this review is to focus on the biological properties, function, and regulatory properties of different signaling pathways of MSCs-derived exosomes, highlighting their potential applicability as an alternative cell-free therapy for IDD.
Study Design. In vitro study. Objective. To investigate the effect of irisin on human nucleus pulposus cells (hNPCs) in vitro. Summary of Background Data. Physical exercise (PE) favours weight loss and ameliorates function in patients with low back pain. Although there is no biological evidence that the intervertebral disk (IVD) can respond to PE, recent studies have shown that running is associated with increased IVD hydration and hypertrophy. Irisin, a myokine released upon muscle contraction, has demonstrated anabolic effects on different cell types, including chondrocytes. Materials and Methods. hNPCs were exposed to 5, 10, and 25 ng/mL irisin. Cell proliferation, glycosaminoglycan (GAG) content, metabolic activity, gene expression of collagen type II (COL2), matrix metalloproteinase (MMP)-13, tissue inhibitor of matrix metalloproteinase (TIMP)-1 and TIMP-3, aggrecan (ACAN), interleukin (IL)-1β, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 were assessed. In addition, MTT assay and ADAMTS-5, COL2, TIMP-1, and IL-1β gene expression were evaluated following incubation with irisin for 24 hours and subsequent culture with 10 ng/mL IL-1β and vice versa (incubation for 24 hours with IL-1β and subsequent culture with irisin). Results. Irisin increased hNPC proliferation, metabolic activity, and GAG content, as well as COL2, ACAN, TIMP-1 and TIMP-3 gene expression, while decreasing MMP-13 and IL-1β mRNA levels. Irisin pretreatment of hNPCs cultured in proinflammatory conditions resulted in a rescue of metabolic activity and a decrease of IL-1β levels. Similarly, incubation of hNPCs with IL-1β and subsequent exposure to irisin led to an increment of metabolic activity, COL2 gene expression, and a reduction of IL-1β and ADAMTS-5 levels. Conclusions. Irisin increases hNPC proliferation, GAG content, metabolic activity, and promotes anabolic gene expression while reducing catabolic markers. Irisin may be one of the mediators by which PE and muscle tissues modulate IVD metabolism, suggesting the existence of a biological cross-talk between the muscle and IVD.
Introduction: Adipose tissue is widely exploited in regenerative medicine thanks to its trophic properties, mainly based on the presence of adipose-derived stromal cells. Numerous devices have been developed to promote its clinical use, leading to the introduction of one-step surgical procedures to obtain minimally manipulated adipose tissue derivatives. However, only a few studies compared their biological properties. This study aimed to characterize micro-fragmented (MAT) and nanofat adipose tissue (NAT) obtained with two different techniques.Methods: MAT, NAT and unprocessed lipoaspirate were collected from surgical specimens. RNA extraction and collagenase isolation of stromal vascular fraction (SVF) were performed. Tissue sections were analysed by histological and immunohistochemical (collagen type I, CD31, CD34 and PCNA) staining to assess tissue morphology and cell content. qPCR was performed to evaluate the expression of stemness-related (SOX2, NANOG and OCT3/4), extracellular matrix (COL1A1) and inflammatory genes (IL1β, IL6 and iNOS). Furthermore, multilineage differentiation was assessed following culture in adipogenic and osteogenic media and staining with Oil Red O and Alizarin red. ASC immunophenotype was assessed by flow cytometric analysis of CD90, CD105, CD73 and CD45.Results: Histological and immunohistochemical results showed an increased amount of stroma and a reduction of adipocytes in MAT and NAT, with the latter displaying the highest content of collagen type I, CD31, CD34 and PCNA. From LA to MAT and NAT, an increasing expression of NANOG, SOX2, OCT3/4, COL1A1 and IL6 was noted, while no significant differences in terms of IL1β and iNOS emerged. No statistically significant differences were noted between NAT and SVF in terms of stemness-related genes, while the latter demonstrated a significantly higher expression of stress-related markers. SVF cells derived from all three samples (LA, MAT, and NAT) showed a similar ASC immunoprofile as well as osteogenic and adipogenic differentiation.Discussion: Our results showed that both MAT and NAT techniques allowed the rapid isolation of ASC-rich grafts with a high anabolic and proliferative potential. However, NAT showed the highest levels of extracellular matrix content, replicating cells, and stemness gene expression. These results may provide precious clues for the use of adipose tissue derivatives in the clinical setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.