Cudraflavone B (1) is a prenylated flavonoid found in large amounts in the roots of Morus alba, a plant used as a herbal remedy for its reputed anti-inflammatory properties. The present study shows that this compound causes a significant inhibition of inflammatory mediators in selected in vitro models. Thus, 1 was identified as a potent inhibitor of tumor necrosis factor α (TNFα) gene expression and secretion by blocking the translocation of nuclear factor κB (NF-κB) from the cytoplasm to the nucleus in macrophages derived from a THP-1 human monocyte cell line. The NF-κB activity reduction resulted in the inhibition of cyclooxygenase 2 (COX-2) gene expression. Compound 1 acts as a COX-2 and COX-1 inhibitor with higher selectivity toward COX-2 than indomethacin. Pretreatment of cells by 1 shifted the peak in an regulatory gene zinc-finger protein 36 (ZFP36) expression assay. This natural product has noticeable anti-inflammatory properties, suggesting that 1 potentially could be used for development as a nonsteroidal anti-inflammatory drug lead.
Optical fibers have recently attracted a noticeable interest for biomedical applications because they provide a minimally invasive method for in vivo sensing, imaging techniques, deep‐tissue photodynamic therapy or optogenetics. The silica optical fibers are the most commonly used because they offer excellent optical properties, and they are readily available at a reasonable price. The fused silica is a biocompatible material, but it is not bioresorbable so it does not decompose in the body and the fibers must be ex‐planted after in vivo use and their fragments can present a considerable risk to the patient when the fiber breaks. In contrast, optical fibers made of phosphate glasses can bring many benefits because such glasses exhibit good transparency in ultraviolet‐visible and near‐infrared regions, and their solubility in water can be tailored by changing the chemical composition. The bioresorbability and toxicity of phosphate glass–based optical fibers were tested in vivo on male laboratory rats for the first time. The fiber was spliced together with a standard graded‐index multi‐mode fiber pigtail and an optical probe for in vitro pH measurement was prepared by the immobilization of a fluorescent dye on the fiber tip by a sol‐gel method to demonstrate applicability and compatibility of the fiber with common fiber optics.
BACKGROUND AND PURPOSEPaulownia tomentosa is a rich source of geranylated flavanones, some of which we have previously shown to have cytotoxic activity. To identify members of this class of compounds with cytostatic effects, we assessed the effects of the geranylated flavanone tomentodiplacone B (TOM B) on cell cycle progression and cell cycle regulatory pathways of THP-1 human monocytic leukaemia cells. EXPERIMENTAL APPROACHCell viability was measured by dye exclusion and proliferation by WST-1 assays; cell cycle was monitored by flow cytometry. Regulatory proteins were assessed by immunoprecipitation and kinase assays, and Western blotting. KEY RESULTSTomentodiplacone B had no effect during the first 24 h of cell growth at concentrations between 1 and 2.5 mM, but inhibited cell growth in a dose-dependent manner at concentrations of 5 mM or higher. Growth inhibition during the first 24 h of exposure to TOM B was not accompanied by cytotoxicity as cells were accumulated in G1 phase dose-dependently. This G1 phase accumulation was associated with down-regulation of cyclin-dependent kinase 2 activity and also protein levels of cyclins E1 and A2. However, key stress-related molecules (g-H2AX, p53 and p21) were not induced, suggesting that TOM B acts by directly inhibiting the cyclin-dependent kinase 2 signalling pathway rather than initiating DNA damage or cellular stress. CONCLUSIONS AND IMPLICATIONSOur study provides the first evidence that TOM B directly inhibits proliferation of human monocytic leukaemia cells, and thus is a potential anticancer agent, preventing leukaemia cells from progressing from G1 phase into DNA synthesis. AbbreviationsCDK, cyclin-dependent kinase; CKI, cyclin-dependent kinase inhibitors; FBS, fetal bovine serum; hESC, human embryonic stem cells; HFF, human foreskin fibroblasts; TOM B, tomentodiplacone B BJP British Journal of Pharmacology
Morus alba L. (MA) is a natural source of many compounds with different biological effects. It has been described to possess anti-inflammatory, antioxidant, and hepatoprotective activities. The aim of this study was to evaluate cytotoxicity of three flavonoids isolated from MA (kuwanon E, cudraflavone B, and 4′-O-methylkuwanon E) and to determine their effects on proliferation of THP-1 cells, and on cell cycle progression of cancer cells. Anti-inflammatory effects were also determined for all three given flavonoids. Methods used in the study included quantification of cells by hemocytometer and WST-1 assays, flow cytometry, western blotting, ELISA, and zymography. From the three compounds tested, cudraflavone B showed the strongest effects on cell cycle progression and viability of tumor and/or immortalized cells and also on inflammatory response of macrophage-like cells. Kuwanon E and 4′-O-methylkuwanon E exerted more sophisticated rather than direct toxic effect on used cell types. Our data indicate that mechanisms different from stress-related or apoptotic signaling pathways are involved in the action of these compounds. Although further studies are required to precisely define the mechanisms of MA flavonoid action in human cancer and macrophage-like cells, here we demonstrate their effects combining antiproliferative and anti-inflammatory activities, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.