Summary
The role of YODA MITOGEN ACTIVATED PROTEIN KINASE KINASE KINASE 4 (MAPKKK4) upstream of MITOGEN ACTIVATED PROTEIN KINASE 6 (MPK6) was studied during post-embryonic root development of Arabidopsis thaliana. Loss- and gain-of-function mutants of YODA (yda1 and ΔNyda1) were characterized in terms of root patterning, endogenous auxin content and global proteomes.We surveyed morphological and cellular phenotypes of yda1 and ΔNyda1 mutants suggesting possible involvement of auxin. Endogenous indole-3-acetic acid (IAA) levels were up-regulated in both mutants. Proteomic analysis revealed up-regulation of auxin biosynthetic enzymes tryptophan synthase and nitrilases in these mutants. The expression, abundance and phosphorylation of MPK3, MPK6 and MICROTUBULE ASSOCIATED PROTEIN 65–1 (MAP65-1) were characterized by quantitative polymerase chain reaction (PCR) and western blot analyses and interactions between MAP65-1, microtubules and MPK6 were resolved by quantitative co-localization studies and co-immunoprecipitations.yda1 and ΔNyda1 mutants showed disoriented cell divisions in primary and lateral roots, abortive cytokinesis, and differential subcellular localization of MPK6 and MAP65-1. They also showed deregulated expression of TANGLED1 (TAN1), PHRAGMOPLAST ORIENTING KINESIN 1 (POK1), and GAMMA TUBULIN COMPLEX PROTEIN 4 (GCP4).The findings that MPK6 localized to preprophase bands (PPBs) and phragmoplasts while the mpk6-4 mutant transformed with MPK6AEF (alanine (A)–glutamic acid (E)–phenylanine (F)) showed a root phenotype similar to that of yda1 demonstrated that MPK6 is an important player downstream of YODA. These data indicate that YODA and MPK6 are involved in post-embryonic root development through an auxin-dependent mechanism regulating cell division and mitotic microtubule (PPB and phragmoplast) organization.
SummaryThis study revealed activation-dependent and coordinated relocation of Medicago sativa SIMKK and SIMK after salt stress. Arabidopsis seedlings stably overexpressing YFP-tagged SIMKK showed altered salt sensitivity and proteome changes.
Although it is generally accepted that signal transduction in plant mitogen-activated protein kinase signaling cascades is regulated via rapid posttranslational modifications, there are also several compelling examples of swift stress induced transcriptional activation of plant MAP kinase genes. A possible function of these fast and transient events is to compensate for protein losses caused by degradation of phosphorylated MAP kinases within stimulated pathways. Nevertheless, there is still need for additional evidence to precisely describe the regulatory role of plant MAP kinase transcriptional dynamics, especially in the context of whole stress stimulated pathways including also other signaling molecules and transcription factors. During the last two decades a reverse transcription quantitative real-time PCR became a golden choice for the accurate and fast quantification of the gene expression and gene expression dynamic. In here, we provide a robust, cost-effective SYBR Green-based RT-qPCR protocol that is suitable for the quantification of stress induced plant MAP kinase transcriptional dynamics in various plant species.
Mitogen-activated protein kinases (MAPK) are key regulatory elements in many processes. They are highly conserved throughout eukaryotes. In plants, MAPKs are involved in biotic and abiotic stress responses; they regulate cell division, cell growth, and also programmed cell death. In vivo visualization of MAPKs is crucial for understanding of their spatiotemporal organization. Cloning of MAPK-fluorescent protein fusions might present difficulties related to the preservation of protein-protein interactions essential for MAPK localization, interactions with upstream and downstream regulators, and finally substrate targeting. In this chapter we describe cloning of MAPKs in the flexible MultiSite Gateway(®) cloning system followed by easy and quick testing of binary vectors by transient assays in Arabidopsis thaliana and Nicotiana benthamiana.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.