Transgenic Arabidopsis thaliana plants overproducing the E2Fa-DPa transcription factor have two distinct cell-specific phenotypes: some cells divide ectopically and others are stimulated to endocycle. The decision of cells to undergo extra mitotic divisions has been postulated to depend on the presence of a mitosis-inducing factor (MIF). Plants possess a unique class of cyclin-dependent kinases (CDKs; B-type) for which no ortholog is found in other kingdoms. The peak of CDKB1;1 activity around the G2-M boundary suggested that it might be part of the MIF. Plants that overexpressed a dominant negative allele of CDKB1;1 underwent enhanced endoreduplication, demonstrating that CDKB1;1 activity was required to inhibit the endocycle. Moreover, when the mutant CDKB1;1 allele was overexpressed in an E2Fa-DPa–overproducing background, it enhanced the endoreduplication phenotype, whereas the extra mitotic cell divisions normally induced by E2Fa-DPa were repressed. Surprisingly, CDKB1;1 transcription was controlled by the E2F pathway, as shown by its upregulation in E2Fa-DPa–overproducing plants and mutational analysis of the E2F binding site in the CDKB1;1 promoter. These findings illustrate a cross talking mechanism between the G1-S and G2-M transition points
The endocycle represents an alternative cell cycle that is activated in various developmental processes, including placental formation, Drosophila oogenesis, and leaf development. In endocycling cells, mitotic cell cycle exit is followed by successive doublings of the DNA content, resulting in polyploidy. The timing of endocycle onset is crucial for correct development, because polyploidization is linked with cessation of cell division and initiation of terminal differentiation. The anaphase-promoting complex/cyclosome (APC/C) activator genes CDH1, FZR, and CCS52 are known to promote endocycle onset in human, Drosophila, and Medicago species cells, respectively; however, the genetic pathways governing development-dependent APC/C CDH1/FZR/CCS52 activity remain unknown. We report that the atypical E2F transcription factor E2Fe/DEL1 controls the expression of the CDH1/FZR orthologous CCS52A2 gene from Arabidopsis thaliana. E2Fe/DEL1 misregulation resulted in untimely CCS52A2 transcription, affecting the timing of endocycle onset. Correspondingly, ectopic CCS52A2 expression drove cells into the endocycle prematurely. Dynamic simulation illustrated that E2Fe/DEL1 accounted for the onset of the endocycle by regulating the temporal expression of CCS52A2 during the cell cycle in a development-dependent manner. Analogously, the atypical mammalian E2F7 protein was associated with the promoter of the APC/C-activating CDH1 gene, indicating that the transcriptional control of APC/C activator genes by atypical E2Fs might be evolutionarily conserved.D uring the mitotic cell cycle, DNA that is duplicated during the S phase is divided at the M phase, so that each daughter cell produced has a genomic DNA content equal to that of its parents. In contrast, during the endoreduplication cycle, no cytokinesis occurs between rounds of DNA replication, resulting in successive doublings of the DNA ploidy level. This process occurs in a wide variety of cell types in arthropods and mammals and is particularly prominent in dicotyledonous plants (1), especially in species with a small genome and a short life cycle, in which repetitive DNA replication might support growth under conditions that require rapid development (2, 3).Mitotic cell cycle progression and endoreduplication are linked events. Premature or delayed exit from the cell division program results in an increased or decreased DNA ploidy, respectively (4-10). Therefore, the onset of endoreduplication must be controlled precisely. At the molecular level, endoreduplication is likely achieved through elimination of the components needed to progress through mitosis (11). Predominant roles in this process are played by the anaphase-promoting complex/cyclosome (APC/C) activator genes, such as CDH1, FZR, and CCS52A, which have been found to promote endocycle onset and progression in human, Drososphila melanogaster, and Medicago truncatula cells, respectively (12-17). The mechanisms controlling the transcriptional activity of these genes remain unclear, however.Over the years, it has beco...
2Plants can acclimate by using tropisms to link the direction of growth to 41 environmental conditions. Hydrotropism allows roots to forage for water, a process 42 known to depend on abscisic acid (ABA) but whose molecular and cellular basis 43 remains unclear. Here, we show that hydrotropism still occurs in roots after laser 44 ablation removed the meristem and root cap. Additionally, targeted expression 45 studies reveal that hydrotropism depends on the ABA signalling kinase, SnRK2.2, and 46 the hydrotropism-specific MIZ1, both acting specifically in elongation zone cortical 47 cells. Conversely, hydrotropism, but not gravitropism, is inhibited by preventing 48 differential cell-length increases in the cortex, but not in other cell types. We conclude 49 that root tropic responses to gravity and water are driven by distinct tissue-based 50 mechanisms. In addition, unlike its role in root gravitropism, the elongation zone 51 performs a dual function during a hydrotropic response, both sensing a water 52 potential gradient and subsequently undergoing differential growth. 53 3 Tropic responses are differential growth mechanisms that roots use to explore the 54 surrounding soil efficiently. In general, a tropic response can be divided into several steps, 55 comprising perception, signal transduction, and differential growth. All of these steps have 56 been well characterized for gravitropism, where gravity sensing cells in the columella of the 57 root cap generate a lateral auxin gradient, whilst adjacent lateral root cap cells transport 58 auxin to epidermal cells in the elongation zone, thereby triggering the differential growth that 59 drives bending [1][2][3][4] . In gravi-stimulated roots, the lateral auxin gradient is transported 60 principally by AUX1 and PIN carriers [3][4][5] . 61Compared with gravitropism, the tropic response to asymmetric water availability, i.e., 62 hydrotropism, has been far less studied. Previously, it was reported that surgical removal or 63 ablation of the root cap reduces hydrotropic bending in pea [6][7][8] and Arabidopsis thaliana 9 , 64suggesting that the machinery for sensing moisture gradients resides in the root cap. It has 65 also been reported that hydrotropic bending occurs due to differential growth in the 66 elongation zone 7,10 . However unlike gravitropism, hydrotropism in A. thaliana is independent 67 of AUX1 and PIN-mediated auxin transport 11,12 . Indeed, roots bend hydrotropically in the 68 absence of any redistribution of auxin detectable by auxin-responsive reporters 13,14 . 18,19 . 83However it is unclear whether this broad expression pattern is necessary for MIZ1's function 84 in hydrotropism or whether ABA signal transduction components in general have to be 85 expressed in specific root tip tissues for a hydrotropic response. The present study describes 86 a series of experiments in A. thaliana designed to identify the root tissues essential for a 87 hydrotropic response. We report that MIZ1 and a key ABA signal-transduction component 88SnRK2....
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.