We demonstrate that ultrashort and ultraintense light filaments survive their interaction with water droplets as large as 95 μm and that they are transmitted through water clouds having an optical thickness as high as 3.2 (transmission 5%). In contrast with linear optics, this remarkable transmission through optically dense media results from a dynamic energy balance between the quasisolitonic structure and the surrounding laser photon bath, which acts as an energy reservoir. Implications for free-space laser communications, remote sensing, and telemetry are discussed.
Fundamental selectivity limits of quantum control are pushed by introducing laser driven optimal dynamic discrimination to create distinguishing excitations on two nearly identical flavin molecules. Even with modest spectral resources, significant specificity is achieved with optimal pulse shapes, which amplify small molecular differences to create distinct, identifying signals. Rather than being a hindrance, system complexity appears to aid the control process and augments control field capability, which bodes well for implementation of quantum control in a variety of demanding applications.
The acoustic wave emitted from the plasma channel associated with a filament induced by a femtosecond laser pulse in air was detected with a microphone. This sonographic detection provides a new method to determine the length and the spatial profile of the free-electron density of a filament. The acoustic wave is emitted owing to the expansion of the gas in the filament, which is heated through collisions with high-energy photoelectrons generated by multiphoton ionization. Compared with other methods, the acoustic detection is simpler, more sensitive, and with higher spatial resolution, making it suitable for field measurements over kilometer-range distances or laboratory-scale studies on the fine structure of a filament.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.