The inhibition of digestive lipases by the antiobesity drug Orlistat along with lipolysis levels and fecal fat excretion were measured in healthy humans. Orlistat was found to be a powerful gastric lipase inhibitor, achieving 46.6--91.4% enzyme inhibition and thus greatly reducing gastric lipolysis of solid and liquid meals (11--33% of respective controls). Gastric lipase inhibition by Orlistat was extremely fast (half-inhibition time < 1 min). Duodenal lipolysis was reduced significantly by Orlistat given with the solid meal (32.6--37.6% of controls) but was only slightly reduced by Orlistat given with the liquid meal (74.5--100% of controls). Human pancreatic lipase (HPL) inhibition was found to be high (51.2--82.6%), however, regardless of the meal. These paradoxical results were explained when in vitro lipolysis experiments were performed. The rates of HPL inhibition by Orlistat were found to be similar with both types of meals (half-inhibition time 5--6 min), but the preemulsified triglycerides of the liquid meal were rapidly hydrolyzed by HPL before the enzyme was significantly inhibited by Orlistat. With the solid meal, the rate of hydrolysis of the meal triglycerides by HPL was slower than the rate of HPL inhibition by Orlistat. As predicted from the previous results, the effects of Orlistat on fat excretion levels were found to be much greater with the solid (40.5--57.4% of ingested fat) than with the liquid (4.2--18.8%) test meal.
Five key amino acid residues from human pancreatic lipase (HPL) are mutated in some pancreatic lipase-related proteins 2 (PLRP2) that are not reactivated by colipase in the presence of bile salts. One of these residues (Y403) is involved in a direct interaction between the HPL C-terminal domain and colipase. The other four residues (R256, D257, Y267, and K268) are involved in the interactions stabilizing the open conformation of the lid domain, which also interacts with colipase. Here we produced and characterized three HPL mutants: HPL Y403N, an HPL four-site mutant (R256G, D257G, Y267F, and K268E), and an HPL five-site mutant (R256G, D257G, Y267F, K268E, and Y403N), in which the HPL amino acids were replaced by those present in human PLRP2. Colipase reactivated both the HPL Y403N mutant and HPL, and Y403 is therefore not essential for lipase-colipase interactions. Both the HPL four-site and five-site mutants showed low activity on trioctanoin, were inhibited by bile salts (sodium taurodeoxycholate, NaTDC) and were not reactivated by colipase. The interfacial binding of the HPL four-site mutant to a trioctanoin emulsion was suppressed in the presence of 4 mM NaTDC and was not restored by addition of colipase. Protein blotting/protein overlay immunoassay revealed that the HPL four-site mutant-colipase interactions are not abolished, and therefore, the absence of reactivation of the HPL four-site mutant is probably due to a lid domain conformation that prevents the interfacial binding of the lipase-colipase complex. The effects of colipase were also studied with HPL(-lid), an HPL mutant showing an 18-residue deletion within the lid domain, which therefore has only one colipase interaction site. HPL(-lid) showed a low activity on trioctanoin, was inhibited by bile salts, and recovered its lipase activity in the presence of colipase. Reactivation of HPL(-lid) by colipase was associated with a strong interfacial binding of the mutant to a trioctanoin emulsion. The lid domain is therefore not essential for either the interfacial binding of HPL or the lipase-colipase interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.