The growth of perennial plants in the temperate zone alternates with periods of dormancy that are typically initiated during bud development in autumn. In a systems biology approach to unravel the underlying molecular program of apical bud development in poplar (Populus tremula 3 Populus alba), combined transcript and metabolite profiling were applied to a high-resolution time course from short-day induction to complete dormancy. Metabolite and gene expression dynamics were used to reconstruct the temporal sequence of events during bud development. Importantly, bud development could be dissected into bud formation, acclimation to dehydration and cold, and dormancy. To each of these processes, specific sets of regulatory and marker genes and metabolites are associated and provide a reference frame for future functional studies. Light, ethylene, and abscisic acid signal transduction pathways consecutively control bud development by setting, modifying, or terminating these processes. Ethylene signal transduction is positioned temporally between light and abscisic acid signals and is putatively activated by transiently low hexose pools. The timing and place of cell proliferation arrest (related to dormancy) and of the accumulation of storage compounds (related to acclimation processes) were established within the bud by electron microscopy. Finally, the identification of a large set of genes commonly expressed during the growth-to-dormancy transitions in poplar apical buds, cambium, or Arabidopsis thaliana seeds suggests parallels in the underlying molecular mechanisms in different plant organs.
Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula 3 Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested.
Lignin engineering is an attractive strategy to improve lignocellulosic biomass quality for processing to biofuels and other bio-based products. However, lignin engineering also results in profound metabolic consequences in the plant. We used a systems biology approach to study the plant's response to lignin perturbations. To this end, inflorescence stems of 20 Arabidopsis thaliana mutants, each mutated in a single gene of the lignin biosynthetic pathway (phenylalanine ammonia-lyase1, and cinnamyl alcohol dehydrogenase6 [CAD6], two mutant alleles each), were analyzed by transcriptomics and metabolomics. A total of 566 compounds were detected, of which 187 could be tentatively identified based on mass spectrometry fragmentation and many were new for Arabidopsis. Up to 675 genes were differentially expressed in mutants that did not have any obvious visible phenotypes. Comparing the responses of all mutants indicated that c4h, 4cl1, ccoaomt1, and ccr1, mutants that produced less lignin, upregulated the shikimate, methyl-donor, and phenylpropanoid pathways (i.e., the pathways supplying the monolignols). By contrast, f5h1 and comt, mutants that provoked lignin compositional shifts, downregulated the very same pathways. Reductions in the flux to lignin were associated with the accumulation of various classes of 4-O-and 9-O-hexosylated phenylpropanoids. By combining metabolomic and transcriptomic data in a correlation network, system-wide consequences of the perturbations were revealed and genes with a putative role in phenolic metabolism were identified. Together, our data provide insight into lignin biosynthesis and the metabolic network it is embedded in and provide a systems view of the plant's response to pathway perturbations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.