Metabolic reprogramming of cancer cells and the tumor microenvironment are emerging as key factors governing tumor growth, metastasis, and response to therapies including immune checkpoint inhibitors. It has been recognized that rapidly proliferating cancer cells, tumor-infiltrating lymphocytes, and vascular endothelial cells compete for oxygen and nutrients. Tumor cells and other cell types in the microenvironment not only compete for nutrients, but they also simultaneously produce immunosuppressive metabolites, leading to immune escape. In addition, commensal microbial metabolites can influence regulatory T cells and inflammation in the intestine, thus playing an essential role in cancer prevention or cancer promotion. In this review, we summarize recent advances on metabolic interactions among various cell types in the tumor microenvironment, with a focus on how these interactions affect tumor immunity. We also discuss the potential role of blood vessel metabolism in regulating immune cell trafficking and activation.
Fig. 2. Confocal imaging of cell penetration. BHK cells were treated for 1 h with DyLight 550 fluorescently labeled cargo proteins β-Gal (A), HRP (B) and myoglobin (C) (rendered as white in left panels, red in center and right panels), in either the absence or presence of TAT-CaM, washed and imaged live. Center images are optical sections set at a similar depth of the nucleus (NucBlue staining, white, center and right panels), as determined by position within the Z-stack. Orthogonal projections are shown at the right (boxed in red) and top (boxed in green) sides of each panel. Cytoplasmic compartments in live cells were visualized using CellTracker Green CMFDA dye (green in right panels). Comparison of TAT-CaM-treated versus untreated cells indicates that cargo proteins are entering the cell, and are localized primarily to the cytoplasm. Scale bars in all panels, 20 μm. Each experiment was replicated at least twice with the same results. 2474 ABSTRACTThe use of cell-penetrating peptides (CPPs) as biomolecular delivery vehicles holds great promise for therapeutic and other applications, but development has been stymied by poor delivery and lack of endosomal escape. We have developed a CPP-adaptor system capable of efficient intracellular delivery and endosomal escape of user-defined protein cargos. The cell-penetrating sequence of HIV transactivator of transcription was fused to calmodulin, which binds with subnanomolar affinity to proteins containing a calmodulin binding site. Our strategy has tremendous advantage over prior CPP technologies because it utilizes high-affinity non-covalent, but reversible coupling between CPP and cargo. Three different cargo proteins fused to a calmodulin binding sequence were delivered to the cytoplasm of eukaryotic cells and released, demonstrating the feasibility of numerous applications in living cells including alteration of signaling pathways and gene expression.
Malignant tumors reprogram cellular metabolism to support cancer cell proliferation and survival. Although most cancers depend on a high rate of aerobic glycolysis, many cancer cells also display addiction to glutamine. Mounting evidence indicates key roles of glutamine transporters and glutaminase activity in cancer glutamine metabolism. Here, we show that the EphA2 receptor tyrosine kinase activates YAP and TAZ (YAP/TAZ), transcriptional co-activators of the TEAD family of transcription factors, to promote glutamine metabolism in models of HER2-positive breast cancer. EphA2 overexpression induced nuclear accumulation of YAP and TAZ and increased expression of YAP/TAZ target genes. Inhibition of Rho or ROCK kinase abolished EphA2-dependent YAP/TAZ nuclear localization, suggesting Rho signaling as a critical intermediary. Silencing of YAP or TAZ significantly reduced intracellular glutamate, through differential regulation of SLC1A5 and GLS, respectively. Indeed, the regulatory DNA elements of both SLC1A5 and GLS contain TEAD binding sites and were bound by TEAD4 in an EphA2-dependent manner. In human breast cancer, EphA2 expression positively correlates with YAP and TAZ, as well as GLS and SLC1A5. While high expression of EphA2 predicts enhanced metastatic potential and poor survival, increased EphA2 expression rendered HER2-positive breast cancer cells more sensitive to glutaminase inhibition. Together, these findings define a novel mechanism of EphA2-mediated YAP/TAZ activation to promote glutaminolysis through upregulation of GLS and SLC1A5 in HER2+ breast cancer.
Cell penetrating peptides have long held great potential for delivery of biomolecular cargos for research, therapeutic and diagnostic purposes. They allow rapid, relatively nontoxic passage of a wide variety of biomolecules through the plasma membranes of living cells. However, CPP-based research tools and therapeutics have been stymied by poor efficiency in release from endosomes and a great deal of effort has been made to solve this ‘endosomal escape problem.’ Previously, we showed that use of a reversible, noncovalent coupling between CPP and cargo using calmodulin and a calmodulin binding motif allowed efficient delivery of cargo proteins to the cytoplasm in baby hamster kidney and other mammalian cell lines. The present report demonstrates the efficacy of our CPP-adaptor scheme for efficient delivery of model cargos to the cytoplasm using a variety of CPPs and adaptors. Effective overcoming of the endosomal escape problem is further demonstrated by the delivery of cargo to the nucleus, endoplasmic reticulum and peroxisomes by addition of appropriate subcellular localization signals to the cargos. CPP-adaptors were also used to deliver cargo to myotubes, demonstrating the feasibility of the system as an alternative to transfection for the manipulation of hard-to-transfect cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.