We prove that the pleated hyperbolic paraboloid, a familiar origami model known since 1927, in fact cannot be folded with the standard crease pattern in the standard mathematical model of zero-thickness paper. In contrast, we show that the model can be folded with additional creases, suggesting that real paper "folds" into this model via small such creases. We conjecture that the circular version of this model, consisting simply of concentric circular creases, also folds without extra creases.At the heart of our results is a new structural theorem characterizing uncreased intrinsically flat surfaces-the portions of paper between the creases. Differential geometry has much to say about the local behavior of such surfaces when they are sufficiently smooth, e.g., that they are torsal ruled. But this classic result is simply false in the context of the whole surface. Our structural characterization tells the whole story, and even applies to surfaces with discontinuities in the second derivative. We use our theorem to prove fundamental properties about how paper folds, for example, that straight creases on the piece of paper must remain piecewise-straight (polygonal) by folding. *
We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming.
Given an even number of points in a plane, we are interested in matching all the points by straight line segments so that the segments do not cross. Bottleneck matching is a matching that minimizes the length of the longest segment. For points in convex position, we present a quadratic-time algorithm for finding a bottleneck non-crossing matching, improving upon the best previously known algorithm of cubic time complexity.
We briefly review the distinction between abstract groups and symmetry groups of objects, and discuss the question of which groups have appeared as the symmetry groups of physical objects. To our knowledge, the quaternion group (a beautiful group with eight elements) has not appeared in this fashion. We describe the quaternion group, both formally and intuitively, and give our strategy for representing the quaternion group as the symmetry group of a physical sculpture. arXiv:1404.6596v1 [math.HO]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.