Jaenisch RB, Hentschke VS, Quagliotto E, Cavinato PR, Schmeing LA, Xavier LL, Dal Lago P. Respiratory muscle training improves hemodynamics, autonomic function, baroreceptor sensitivity, and respiratory mechanics in rats with heart failure. J Appl Physiol 111: 1664 -1670, 2011. First published September 8, 2011 doi:10.1152/japplphysiol.01245.2010.-Respiratory muscle training (RMT) improves functional capacity in chronic heart-failure (HF) patients, but the basis for this improvement remains unclear. We evaluate the effects of RMT on the hemodynamic and autonomic function, arterial baroreflex sensitivity (BRS), and respiratory mechanics in rats with HF. Rats were assigned to one of four groups: sedentary sham (n ϭ 8), trained sham (n ϭ 8), sedentary HF (n ϭ 8), or trained HF (n ϭ 8). Trained animals underwent a RMT protocol (30 min/day, 5 day/wk, 6 wk of breathing through a resistor), whereas sedentary animals did not. In HF rats, RMT had significant effects on several parameters. It reduced left ventricular (LV) end-diastolic pressure (P Ͻ 0.01), increased LV systolic pressure (P Ͻ 0.01), and reduced right ventricular hypertrophy (P Ͻ 0.01) and pulmonary (P Ͻ 0.001) and hepatic (P Ͻ 0.001) congestion. It also decreased resting heart rate (HR; P Ͻ 0.05), indicating a decrease in the sympathetic and an increase in the vagal modulation of HR. There was also an increase in baroreflex gain (P Ͻ 0.05). The respiratory system resistance was reduced (P Ͻ 0.001), which was associated with the reduction in tissue resistance after RMT (P Ͻ 0.01). The respiratory system and tissue elastance (Est) were also reduced by RMT (P Ͻ 0.01 and P Ͻ 0.05, respectively). Additionally, the quasistatic Est was reduced after RMT (P Ͻ 0.01). These findings show that a 6-wk RMT protocol in HF rats promotes an improvement in hemodynamic function, sympathetic and vagal heart modulation, arterial BRS, and respiratory mechanics, all of which are benefits associated with improvements in cardiopulmonary interaction. myocardial infarction; cardiovascular control; diaphragm; cardiopulmonary interaction THE HALLMARK SYMPTOMS OF heart failure (HF) subsequent to myocardial infarction (MI) are dyspnea and early fatigue, leading to reduced exercise tolerance and functional capacity (1). Furthermore, after MI, the neurohumoral excitation, which initially helps to preserve the cardiac output of patients who have systolic dysfunction, becomes deleterious with the persistence of cardiac dysfunction (12). In HF, the neurohumoral excitation is characterized by sympathetic hyperactivity and the attenuation of parasympathetic activity (12), which is associated with blunted baroreflex sensitivity (BRS) (30). In this context, impaired short-term control of arterial pressure (AP) and decreased heart-rate variability (HRV) (30) have been associated with an increased risk of sudden death of cardiac origin (45) and postinfarct mortality, regardless of the ejection fraction or ventricular arrhythmias (30).Together with the cardiovascular alterations, changes in the r...
Following heart failure (HF), immune activation leads to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Low-level laser therapy (LLLT) has been used as an anti-inflammatory treatment in several disease conditions. However, the effect of LLLT on the skeletal muscle of rats with HF remains unclear. The present report aimed to evaluate the influence of LLLT on the inflammatory profile of rats with HF. The left coronary artery was ligated to induce HF and a sham operation was performed in the control groups. Male Wistar rats (n=49) were assigned to one of six groups: placebo sham rats (P-Sham; n=8), LLLT at a dose of 3 J/cm(2) sham rats (3 J/cm(2)-Sham; n=8), LLLT at a dose of 21 J/cm(2) sham rats (21 J/cm(2)-Sham; n=8), placebo HF rats (P-HF; n=9), LLLT at a dose of 3 J/cm(2) HF rats (3 J/cm(2)-HF; n=8), and LLLT at a dose of 21 J/cm(2) HF rats (21 J/cm(2)-HF; n=8). Four weeks after myocardial infarction or sham surgery, rats were subjected to LLLT (InGaAlP 660 nm, spot size 0.035 cm(2), output power 20 mW, power density 0.571 W/cm(2), energy density 3 or 21 J/cm(2), exposure time 5.25 s and 36.75 s) on the right gastrocnemius for 10 consecutive days. LLLT reduced plasma IL-6 levels (61.3 %; P<0.01), TNF-α/IL-10 (61.0 %; P<0.01) and IL-6/IL-10 ratios (77.3 %; P<0.001) and increased IL-10 levels (103 %; P<0.05) in the 21 J/cm(2)-HF group. Moreover, LLLT reduced the TNF-α (20.1 % and 21.3 %; both P<0.05) and IL-6 levels (54.3 % and 37.8 %; P<0.01 and P<0.05, respectively) and the IL-6/IL-10 ratio (59.7 % and 42.2 %; P<0.001 and P<0.05, respectively) and increased IL-10 levels (81.0 % and 85.1 %; both P<0.05) and the IL-10/TNF-α ratio (171.5 % and 119.8 %; P<0.001 and P<0.05, respectively) in the gastrocnemius in the 3 J/cm(2)-HF and 21 J/cm(2)-HF groups. LLLT showed systemic and skeletal muscle anti-inflammatory effects in rats with HF.
In heart failure (HF), there is an imbalance between the production of reactive oxygen species and the synthesis of antioxidant enzymes, causing damage to the cardiovascular function and increased susceptibility to DNA damage. The aim of this study was to evaluate the influence of low-level laser therapy (LLLT) on parameters of oxidative stress and DNA damage in skeletal muscle and plasma of rats with HF. Wistar rats were allocated into six groups: "placebo" HF rats (P-HF, n = 9), "placebo" Sham rats (P-sham, n = 8), HF rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-HF, n = 8), sham rats at a dose 3 J/cm(2) of LLLT (3 J/cm(2)-sham, n = 8), HF rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-HF, n = 8) and sham rats at a dose 21 J/cm(2) of LLLT (21 J/cm(2)-sham, n = 8). Animals were submitted to a LLLT protocol for 10 days at the right gastrocnemius muscle. Comparison between groups showed a significant reduction in superoxide dismutase (SOD) activity in the 3 J/cm(2)-HF group (p = 0.03) and the 21 J/cm(2)-HF group (p = 0.01) compared to the P-HF group. 2',7'-Dihydrodichlorofluorescein (DCFH) oxidation levels showed a decrease when comparing 3 J/cm(2)-sham to P-sham (p = 0.02). The DNA damage index had a significant increase either in 21 J/cm(2)-HF or 21 J/cm(2)-sham in comparison to P-HF (p = 0.004) and P-sham (p = 0.001) and to 3 J/cm(2)-HF (p = 0.007) and 3 J/cm(2)-sham (p = 0.037), respectively. Based on this, laser therapy appears to reduce SOD activity and DCFH oxidation levels, changing the oxidative balance in the skeletal muscle of HF rats. Otherwise, high doses of LLLT seem to increase DNA damage.
The syndrome of heart failure (HF) promotes central and peripheral dysfunctions that result in functional capacity decrease, leading to fatigue, dyspnea, and exercise intolerance. The use of light-emitting diode therapy (LEDT) has shown good results reducing fatigue and exercise intolerance, when applied on skeletal muscles before or after exercises. Thereby, the aim of this study was to compare the effects of LEDT on functional capacity, aerobic power, and hemodynamic function in HF rats. Male Wistar rats (230-260 g) were randomly allocated into three experimental groups: Sham (n = 6), Control-HF (n = 4), and LEDT-HF (n = 6). The animals were subjected to an exercise performance test (ET) with gas analysis coupled in a metabolic chamber for rats performed two times (6 and 14 weeks after myocardial infarction). On the day after the baseline aerobic capacity test, the animals were submitted during 8 weeks to the phototherapy protocol, five times/week, 60 s of irradiation, 6 J delivered per muscle group. Statistical analysis was performed by one- and two-way ANOVAs with repeated measures and Student-Newman-Keuls post hoc tests (p ≤ 0.05). Comparing the percentage difference (Δ) between baseline and the final ET, there was no significant difference for the VO2max variable considering all groups. However, Sham and LEDT-HF groups showed higher relative values than the Control-HF group, respectively, for distance covered (27.7 and 32.5 %), time of exercise test (17.7 and 20.5 %), and speed (13.6 and 12.2 %). In conclusion, LEDT was able to increase the functional capacity evaluated by distance covered, time, and speed of exercise in rats with HF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.