Abstract-Recognizing text in images taken in the wild is a challenging problem that has received great attention in recent years. Previous methods addressed this problem by first detecting individual characters, and then forming them into words. Such approaches often suffer from weak character detections, due to large intra-class variations, even more so than characters from scanned documents. We take a different view of the problem and present a holistic word recognition framework. In this, we first represent the scene text image and synthetic images generated from lexicon words using gradient-based features. We then recognize the text in the image by matching the scene and synthetic image features with our novel weighted Dynamic Time Warping (wDTW) approach.
Adversarial machine learning has exposed several security hazards of neural models. Thus far, the concept of an "adversarial perturbation" has exclusively been used with reference to the input space referring to a small, imperceptible change which can cause a ML model to err. In this work we extend the idea of "adversarial perturbations" to the space of model weights, specifically to inject backdoors in trained DNNs, which exposes a security risk of publicly available trained models. Here, injecting a backdoor refers to obtaining a desired outcome from the model when a trigger pattern is added to the input, while retaining the original predictions on a non-triggered input. From the perspective of an adversary, we characterize these adversarial perturbations to be constrained within an ℓ ∞ norm around the original model weights. We introduce adversarial perturbations in model weights using a composite loss on the predictions of the original model and the desired trigger through projected gradient descent. Our results show that backdoors can be successfully injected with a very small average relative change in model weight values for several CV and NLP applications. CCS CONCEPTS • Computing methodologies → Neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.