1/f noise measurements were performed on Ni/n-GaN Schottky barrier diode under forward bias over a wide temperature range from 80 to 300 K. The noise spectra exhibited frequency dependence proportional to 1/f 0 with c varying between 0.8 and 1.1 down to 1 Hz. The spectral power density of current fluctuations, S I , was found to decrease with increase in temperature. Current-voltage (I-V) characteristics of the diodes have been measured, and metal-semiconductor interface was found to be spatially inhomogeneous in the temperature range 80-300 K. The decrease in 1/f noise with increase in temperature is explained within the framework of spatial inhomogeneities model. V C 2012 American Institute of Physics. [http://dx.
The photocatalytic activity of eco-friendly zinc oxide doped silica nanocomposites, synthesized via a co-precipitation method followed by heat-treatment at 300, 600, and 900 °C is investigated. The samples have been characterized by employing X-ray diffraction method, and further analyzed using the Rietveld Refinement method. The samples show a space group P63mc with hexagonal structure. The prepared composites are tested for their photocatalytic activities for the degradation of methyl orange-based water pollutants under ultra-violet (UV) irradiation using a 125 W mercury lamp. A systematic analysis of parameters such as the irradiation time, pH value, annealing temperatures, and the concentration of sodium hydroxide impacting the degradation of the methyl orange (MO) is carried out using UV-visible spectroscopy. The ZnO.SiO2 nanocomposite annealed at 300 °C at a pH value of seven shows a maximum photo-degradation ability (~98.1%) towards methyl orange, while the photo-degradation ability of ZnO.SiO2 nanocomposites decreases with annealing temperature (i.e., for 600 and 900 °C) due to the aspect ratio. Moreover, it is seen that with increment in the concentration of the NaOH (i.e., from 1 to 3 g), the photo-degradation of the dye component is enhanced from 20.9 to 53.8%, whereas a reverse trend of degradation ability is observed for higher concentrations.
This paper presents the thermal sensitivity variation trend of Ni/4H-nSiC (0001) Schottky diode based temperature sensor, equipped with floating metal guard ring and oxide field plate as edge terminations in low current regime, i.e., ranging from 1 nA to 5 pA. Various measurements were carried out at temperatures ranging from 233 K to 473 K in steps of 20 K. An imperative outcome of the present study, which is in contrast with the theory, is that there exists an anomaly in the device thermal sensitivity behaviour after a range of current. The thermal sensitivity of the fabricated device, calculated from the slope of forward voltage versus temperature plot, was found to be varied from 3.11 mV/K at 1 nA to 3.32 mV/K at 5 pA with standard error of 60.03 mV/K. A detailed analysis of I-V-T characteristics by taking into account all the possibilities for variation in the barrier height and the ideality factor with temperature emphasizes that there exist barrier height inhomogeneities at the metal-semiconductor interface in the fabricated device. These observations indicate that anomaly in the device thermal sensitivity was due to the barrier height inhomogeneities present in the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.