Summary.We propose a new model for active contours based on a geometric partial differential equation. Our model is intrinsec, stable (satisfies the maximum principle) and permits a rigorous mathematical analysis. It enables us to extract smooth shapes (we cannot retrieve angles) and it can be adapted to find several contours simultaneously. Moreover, as a consequence of the stability, we can design robust algorithms which can be engineed with no parameters in applications. Numerical experiments are presented.Mathematics Subject Classification (1991): 49F22, 53A 10, 82A60, 76T05, 49A50, 80A15, 40F10
Inpainting, the technique of modifying an image in an undetectable form, is as ancient as art itself. The goals and applications of inpainting are numerous, from the restoration of damaged paintings and photographs to the removal/replacement of selected objects. In this paper, we introduce a novel algorithm for digital inpainting of still images that attempts to replicate the basic techniques used by professional restorators. After the user selects the regions to be restored, the algorithm automatically fills-in these regions with information surrounding them. The fill-in is done in such a way that isophote lines arriving at the regions boundaries are completed inside. In contrast with previous approaches, the technique here introduced does not require the user to specify where the novel information comes from. This is automatically done (and in a fast way), thereby allowing to simultaneously fill-in numerous regions containing completely different structures and surrounding backgrounds. In addition, no limitations are imposed on the topology of the region to be inpainted. Applications of this technique include the restoration of old photographs and damaged film; removal of superimposed text like dates, subtitles, or publicity; and the removal of entire objects from the image like microphones or wires in special effects.
A variational approach for filling-in regions of missing data in digital images is introduced. The approach is based on joint interpolation of the image gray levels and gradient/isophotes directions, smoothly extending in an automatic fashion the isophote lines into the holes of missing data. This interpolation is computed by solving the variational problem via its gradient descent flow, which leads to a set of coupled second order partial differential equations, one for the gray-levels and one for the gradient orientations. The process underlying this approach can be considered as an interpretation of the Gestaltist's principle of good continuation. No limitations are imposed on the topology of the holes, and all regions of missing data can be simultaneously processed, even if they are surrounded by completely different structures. Applications of this technique include the restoration of old photographs and removal of superimposed text like dates, subtitles, or publicity. Examples of these applications are given. We conclude the paper with a number of theoretical results on the proposed variational approach and its corresponding gradient descent flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.