Induction motors (IMs) have been extensively used for driving a wide variety of processes in several industries. Their excellent performance, capabilities and robustness explain their extensive use in several industrial applications. However, despite their robustness, IMs are susceptible to failure, with broken rotor bars (BRB) being one of the potential faults. These types of faults usually occur due to the high current amplitude flowing in the bars during the starting transient. Currently, soft-starters have been used in order to reduce the negative effects and stresses developed during the starting. However, the addition of these devices makes the fault diagnosis a complex and sometimes erratic task, since the typical fault-related patterns evolutions are usually irregular, depending on particular aspects that may change according to the technology implemented by the soft-starter. This paper proposes a novel methodology for the automatic detection of BRB in IMs under the influence of soft-starters. The proposal relies on the combined analysis of current and stray flux signals by means of suitable indicators proposed here, and their fusion through a linear discriminant analysis (LDA). Finally, the LDA output is used to train a feed-forward neural network (FFNN) to automatically detect the severity of the failure, namely: a healthy motor, one broken rotor bar, and two broken rotor bars. The proposal is validated under a testbench consisting of a kinematic chain driven by a 1.1 kW IM and using four different models of soft-starters. The obtained results demonstrate the capabilities of the proposal, obtaining a correct classification rate (94.4% for the worst case).
Due to their robustness, versatility and performance, induction motors (IMs) have been widely used in many industrial applications. Despite their characteristics, these machines are not immune to failures. In this sense, breakage of the rotor bars (BRB) is a common fault, which is mainly related to the high currents flowing along those bars during start-up. In order to reduce the stresses that could lead to the appearance of these faults, the use of soft starters is becoming usual. However, these devices introduce additional components in the current and flux signals, affecting the evolution of the fault-related patterns and so making the fault diagnosis process more difficult. This paper proposes a new method to automatically classify the rotor health state in IMs driven by soft starters. The proposed method relies on obtaining the Persistence Spectrum (PS) of the start-up stray-flux signals. To obtain a proper dataset, Data Augmentation Techniques (DAT) are applied, adding Gaussian noise to the original signals. Then, these PS images are used to train a Convolutional Neural Network (CNN), in order to automatically classify the rotor health state, depending on the severity of the fault, namely: healthy motor, one broken bar and two broken bars. This method has been validated by means of a test bench consisting of a 1.1 kW IM driven by four different soft starters coupled to a DC motor. The results confirm the reliability of the proposed method, obtaining a classification rate of 100.00% when analyzing each model separately and 99.89% when all the models are analyzed at a time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.