BackgroundSteady-State Visual Evoked Potential (SSVEP) is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP.MethodsThis research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult). The signal processing method is based on Fourier transform and three EEG measurement channels.ResultsThe research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min.ConclusionsOur proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.
This brief presents the design of a controller that allows an underactuated vessel to track a reference trajectory in the x − y plane. A trajectory tracking controller designed originally for robotic systems is applied for underactuated surface ships. Such a model is represented by numerical methods and, from this approach, the control actions for an optimal operation of the system are obtained. Its main advantage is that the condition for the tracking error tends to zero, and the calculation of control actions are obtained solving a system of linear equations. The proofs of convergence to zero of the tracking error are presented here and complete the previous work of the authors. Simulation results show the good performance of the proposed control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.