4,4'-Methylenedianiline (DAPM) is an aromatic amine used in the synthesis of polyurethanes and epoxy resins. Acute exposure to DAPM produces hepatobiliary toxicity in humans as well as animal models. However, the toxic effects of intermittent DAPM exposure have not been explored. We treated male and female rats with 25 mg DAPM/kg or vehicle once per week for 17-22 wk. Though concentric fibrosis around bile ducts of the liver was noted, vascular medial hyperplasia was also prominent. Morphometric analysis of histologic sections revealed that in male rats, vessel wall area increased relative to lumen area in hepatic arteries by 22 wk. However, in female rats, wall areas of both hepatic and pulmonary arteries increased relative to lumen area by 17 wk. In both male and female rats, increased wall thickness was localized to the medial layer; no intimal changes were noted. In vitro treatment of vascular smooth muscle cells (VSMC) with 25-100 microM DAPM resulted in increased DNA synthesis and VSMC proliferation. To test whether the observed alterations in cell cycle control involved VSMC-mediated metabolism of DAPM to electrophilic intermediates, cells were treated with DAPM or DAPM plus 50 microM N-acetylcysteine (NAC). Coincubation with NAC afforded dramatic protection against DAPM-induced VSMC proliferation. Though DAPM had no appreciable effect on levels of reduced glutathione, oxidized glutathione, or oxidant production, DAPM increased glutathione-S-transferase activity in VSMC. These data indicate that DAPM can initiate VSMC proliferation, possibly via VSMC-mediated metabolism of DAPM to reactive intermediates.
Exposure to 4,4'-diaminodiphenylmethane (DAPM) has been linked to jaundice, toxic hepatitis, cholangitis, and cholestasis. In rodents, DAPM initially injures biliary epithelial cells, and toxicity is greater in female than male rats. Our goal was to determine if gender differences in DAPM toxicity were due to differences in biliary excretion or covalent binding of DAPM metabolites in the liver. Bile duct-cannulated female and male Sprague-Dawley rats were gavaged with vehicle or with 25 or 50 mg [14C]DAPM/kg, and bile was collected for 6 h. Serum and bile indicators of hepatobiliary toxicity were assessed, and radioactivity was measured in bile, serum, urine, and liver. At the 25 mg/kg dose, serum parameters were elevated only in female rats, while increases in serum parameters were observed in both genders at the 50 mg/kg dose. In males rats, biliary constituents altered by DAPM [inorganic phosphate (Pi), glucose, gamma-glutamyl transpeptidase (GGT)] showed time- and dose-dependent responses. In female rats, however, biliary constituents showed either minimal dose-response effects (glucose), were increased equivalently at both doses (Pi), or were not altered by DAPM treatment (GGT). At the 50 mg/kg dose, liver alkaline phosphatase decreased in female but not male rats. Gender also affected the disposition of DAPM metabolites. At 25 mg DAPM/ kg, male rats had greater amounts of DAPM/metabolite in bile and liver, while females had greater amounts in serum and urine. These studies thus confirm that (1) DAPM is more toxic in female than male rats, and (2) gender has a significant effect on the disposition and biliary excretion of DAPM metabolites.
4,4’-Methylenedianiline (4,4’-diaminodiphenylmethane; DAPM) is an aromatic diamine used in the production of numerous polyurethane foams and epoxy resins. Previous studies in rats revealed that DAPM initially injures biliary epithelial cells of the liver, that the toxicity is greater in female than in male rats, and that the toxic metabolites of DAPM are excreted into bile. Since male and female rats exhibit differences in the expression of both phase I and phase II enzymes, our hypothesis was that female rats either metabolize DAPM to more toxic metabolites or have a decreased capacity to conjugate metabolites to less toxic intermediates. Our objective was thus to isolate, characterize, and quantify DAPM metabolites excreted into bile in both male and female bile duct-cannulated Sprague Dawley rats. The rats were gavaged with [14C]-DAPM, and the collected bile was subjected to reversed-phase HPLC with radioisotope detection. Peaks eluting from HPLC were collected and analyzed using electrospray MS, NMR and FT-IR spectroscopy. HPLC analysis indicated numerous metabolites in both sexes, but male rats excreted greater amounts of glutathione and glucuronide conjugates than females. Electrospray MS and NMR spectra of HPLC fractions revealed that the most prominent metabolite found in bile of both sexes was a glutathione conjugate of an imine metabolite of a 4’-nitroso-DAPM. Seven other metabolites were identified, including acetylated, cysteinyl-glycine, glutamyl-cysteine, glycine, and glucuronide conjugates. While our prior studies demonstrated increased covalent binding of DAPM in the liver and bile of female compared to male rats, in these studies, SDS-PAGE with autoradiography revealed 4–5 radiolabeled protein bands in the bile of rats treated with [14C]-DAPM. In addition, these bands were much more prominent in female than in male rats. These studies thus suggest that a plausible mechanism for the increased sensitivity of female rats to DAPM toxicity may be decreased conjugation of reactive DAPM metabolites, leading to greater levels of protein adduct formation.
Methylenedianiline (DAPM) initially injures epithelial cells of major bile ducts, which is followed by cholestasis, cholangitis, and hepatocellular damage. This pattern of biliary injury resembles that produced by alpha-naphthylisothiocyanate (ANIT), a classic bile duct toxicant. Our goal was to determine whether prior depletion of hepatic total glutathione (GSx), a condition reported to protect against biliary tract injury by ANIT, would also protect against DAPM-induced bile duct injury. A new protocol for extensive, sustained depletion of GSx was established. We found that administration of 1-bromoheptane followed 1 h later by buthionine sulfoximine resulted in an approximately 96% depletion of hepatic GSx that persisted through 6 h without biochemical or morphological signs of hepatic injury. Treatment of rats with a minimally hepatotoxic dose of DAPM (without GSx depletion) produced at 6 h injury similar to previous studies: moderate oncosis of biliary epithelial cells (BEC), mild edema of portal triads, and increases in glutathione S-transferase (GST) activities without alterations in hepatic GSx/glutathione disulfide (GSSG), coenzyme A (CoASH)/coenzyme A-glutathione disulfide (CoASSG), or thiobarbituric acid-reactive substances (TBARS). In contrast, DAPM treatment of GSx-depleted rats produced severe oncosis of BEC, marked inflammatory and edematous alterations to portal tracts, and oncosis/apoptosis in scattered hepatocytes. The observed acceleration and enhancement of DAPM-induced liver injury by GSx depletion was associated with a concurrent sevenfold increase in hepatic CoASSG and a fourfold decrease in the ratio of CoASH to CoASSG, compounds presumably localized to mitochondria and a purported index of mitochondrial thiol/disulfide status. These results indicate that: (1) GSx depletion exacerbates BEC and hepatocellular injury induced by DAPM, and (2) the mechanism by which DAPM causes liver injury is likely different from that of the classic bile duct toxicant, ANIT.
Methylenedianiline (DAPM) rapidly injures biliary epithelial cells (BEC) in vivo. Prior to evident BEC injury, biliary glucose and inorganic phosphate appreciably rise, which could stem from loosened tight junctions (TJ). Concurrently, ultrastructural abnormalities in BEC mitochondria of DAPM-treated animals are observed, suggesting other impairments. Our objective was to develop an in vitro BEC model to assess the time course of impairments in TJ integrity, glucose uptake, and mitochondrial function following DAPM exposure. We exposed monolayers of primary, polarized rat BEC to bile collected from rats prior to (Basal Bile) or after oral treatment (DAPM-Bile) with 50 mg DAPM/kg. DAPM-Bile collected during 0-60 min (1st Hr) and during 61-120 min (2nd Hr) after treatment was pooled from four to six rats. When monolayers were exposed to 1st Hr DAPM-Bile for 120 min, metabolic activity (XTT assay) decreased approximately 75%, and transepithelial resistance decreased approximately 16% in agreement with an approximately 65% increase in leakage of a glucose analog, methyl-alpha-D-glucopyranoside (AMG), from apical to basolateral media. By 60 min, AMG uptake was decreased approximately 40%. Mitochondrial function was very rapidly compromised, with approximately 120% increases in the green-to-red fluorescence ratio of JC-1 (mitochondrial membrane potential dye) at 15 min and approximately 55% decreases in ATP levels at 30 min. This sequence of events indicates that DAPM impairs BEC mitochondria prior to impairments in glucose uptake or TJ integrity. Thus, our in vitro primary rat BEC/bile exposure model mimics in vivo observations and yields basic information about the time course of events that occur during DAPM-induced injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.