The establishment of multibeam echosounders (MBES), as a mainstream tool in ocean mapping, has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The combined acoustic response of the seabed and the subsurface can vary with MBES operating frequency. At worst, this can make for difficulties in merging the results from different mapping systems or mapping campaigns. However, at best, having observations of the same seafloor at different acoustic wavelengths allows for increased discriminatory power in seabed classification and characterization efforts. Here, we present the results from trials of a multispectral multibeam system (R2Sonic 2026 MBES, manufactured by R2Sonic, LLC, Austin, TX, USA) in the Bedford Basin, Nova Scotia. In this system, the frequency can be modified on a ping-by-ping basis, which can provide multi-spectral acoustic measurements with a single pass of the survey platform. The surveys were conducted at three operating frequencies (100, 200, and 400 kHz), and the resulting backscatter mosaics revealed differences in parts of the survey area between the frequencies. Ground validation surveys using a combination of underwater video transects and benthic grab and core sampling confirmed that these differences were due to coarse, dredge spoil material underlying a surface cover of mud. These innovations offer tremendous potential for application in the area of seafloor geological and benthic habitat mapping.
The establishment of multibeam echosounders (MBES) as a mainstream tool in ocean mapping has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The combined acoustic response of the seabed and the subsurface can vary with MBES operating frequency. At worst, this can make for difficulties in merging results from different mapping systems or mapping campaigns. At best, however, having observations of the same seafloor at different acoustic wavelengths allows for increased discriminatory power in seabed classification and characterization efforts. Here, we present results from early trials of a multispectral multibeam system (R2Sonic 2026 MBES) in the Bedford Basin, Nova Scotia. In this system, the frequency can be modified on a ping-by-ping basis, which can provide multispectral acoustic measurements with a single pass of the survey platform. We demonstrate how this capability provides improved seafloor discrimination at this site based on the different frequency responses and seafloor sediment characteristics. These innovations offer tremendous potential for application in the area of seafloor geological and benthic habitat mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.