The maximum area of complete spatial summation (i.e., Ricco's area) for human short-wavelength-sensitive-(S-) and long-wavelength-sensitive- (L-) cone mechanisms was measured psychophysically at the fovea and at 1.5 degrees , 4 degrees , 8 degrees , and 20 degrees along the vertical meridian in the superior retina. Increment thresholds were measured for three observers by a temporal two-alternative forced-choice procedure. Test stimuli ranging from -0.36 to 4.61 log area (min2) were presented on concentric 12.3 degrees adapting and auxiliary fields, which isolated either an S- or an L-cone mechanism on the plateau of its respective threshold versus intensity function. Test flash durations were 50 and 10 ms for the S- and L-cone mechanisms, respectively. The data indicate that, from 0 degrees to 20 degrees, Ricco's area increases monotonically for the L-cone mechanism, is variable for the S-cone mechanism, and is larger for the S-cone mechanism than for the L-cone mechanism for essentially all retinal locations. This pattern of results most likely reflects differences in ganglion cell density and changes in neural convergence with retinal eccentricity.
Unique hue loci were measured for four observers in the fovea and at 20-deg temporal eccentricity as a function of test size. Eccentric measurements were made on the cone plateau following a rod bleach. The results indicate that unique yellow remains approximately invariant with respect to test size and retinal eccentricity, whereas unique blue and unique green shift to longer wavelengths with increasing test size. The locus of unique blue in the periphery reaches an asymptote at approximately the same wavelength as that from the foveal measurements, whereas unique green measured in the periphery is consistently at shorter wavelengths than in the fovea. In general, the data are best described by a model in which the short-wavelength-sensitive cone input to the two opponent-color channels decreases with decreasing test size and increasing retinal eccentricity.
Observers with normal color vision vary widely in their judgments of color appearance, such as the specific spectral stimuli they perceive as pure or unique hues. We examined the basis of these individual differences by using factor analysis to examine the variations in hue-scaling functions from both new and previously published data. Observers reported the perceived proportion of red, green, blue or yellow in chromatic stimuli sampling angles at fixed intervals within the LM and S cone-opponent plane. These proportions were converted to hue angles in a perceptual-opponent space defined by red vs. green and blue vs. yellow axes. Factors were then extracted from the correlation matrix using PCA and Varimax rotation. These analyses revealed that inter-observer differences depend on seven or more narrowly-tuned factors. Moreover, although the task required observers to decompose the stimuli into four primary colors, there was no evidence for factors corresponding to these four primaries, or for opponent relationships between primaries. Perceptions of “redness” in orange, red, and purple, for instance, involved separate factors rather than one shared process for red. This pattern was compared to factor analyses of Monte Carlo simulations of the individual differences in scaling predicted by variations in standard opponent mechanisms, such as their spectral tuning or relative sensitivity. The observed factor pattern is inconsistent with these models and thus with conventional accounts of color appearance based on the Hering primaries. Instead, our analysis points to a perceptual representation of color in terms of multiple mechanisms or decision rules that each influence the perception of only a relatively narrow range of hues, potentially consistent with a population code for color suggested by cortical physiology.
A longstanding and unresolved question is how observers construct a discrete set of color categories to partition and label the continuous variations in light spectra, and how these categories might reflect the neural representation of color. We explored the properties of color naming and its relationship to color appearance by analyzing individual differences in color-naming and hue-scaling patterns, using factor analysis of individual differences to identify separate and shared processes underlying hue naming (labeling) and hue scaling (color appearance). Observers labeled the hues of 36 stimuli spanning different angles in cone-opponent space, using a set of eight terms corresponding to primary (red, green, blue, yellow) or binary (orange, purple, blue-green, yellow-green) hues. The boundaries defining different terms varied mostly independently, reflecting the influence of at least seven to eight factors. This finding is inconsistent with conventional color-opponent models in which all colors derive from the relative responses of underlying red-green and blue-yellow dimensions. Instead, color categories may reflect qualitatively distinct attributes that are free to vary with the specific spectral stimuli they label. Inter-observer differences in color-naming were large and systematic, and we examined whether these differences were associated with differences in color appearance by comparing the hue-naming to color percepts assessed by hue scaling measured in the same observers (from Emery et al., submitted). Variability in both tasks again depended on multiple (7 or 8) factors, with some Varimax-rotated factors specific to hue naming or hue scaling, but others common to corresponding stimuli for both judgments. The latter suggests that at least some of the differences in how individuals name or categorize color are related to differences in how the stimuli are perceived.
The effects of intensity on chromatic perceptive field size were investigated along the horizontal meridian at 10 degrees temporal eccentricity by manipulating stimulus intensity from 0.3 to 3.3 log trolands. Following light adaptation, observers described the hue and saturation of monochromatic stimuli (440-660 nm, in 10 nm steps) for a series of test sizes (0.098-3 degrees) presented along the time period associated with the cone plateau of the dark-adaptation function. Perceptive field sizes of the four elemental hues (red, green, yellow, and blue) and the saturation component were estimated by three observers at each intensity level for each wavelength. In general, perceptive field sizes of blue and red are the smallest, and yellow and green are the largest. Furthermore, perceptive field sizes of all four hues decrease with increasing stimulus intensity, though the absolute change is largest for green and yellow. The decrease in size with increase in intensity cannot be completely explained in terms of saturation or rod signals and is likely, then, attributable to a cone-based mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.